Mirage: A Multi-Level Superoptimizer for Tensor Programs
Abstract
Mirage is a multi-level superoptimizer for tensor programs that uses μGraphs to discover combined optimizations and outperforms existing approaches by up to 3.3x.
We introduce Mirage, the first multi-level superoptimizer for tensor programs. A key idea in Mirage is μGraphs, a uniform representation of tensor programs at the kernel, thread block, and thread levels of the GPU compute hierarchy. μGraphs enable Mirage to discover novel optimizations that combine algebraic transformations, schedule transformations, and generation of new custom kernels. To navigate the large search space, Mirage introduces a pruning technique based on abstraction that significantly reduces the search space and provides a certain optimality guarantee. To ensure that the optimized μGraph is equivalent to the input program, Mirage introduces a probabilistic equivalence verification procedure with strong theoretical guarantees. Our evaluation shows that Mirage outperforms existing approaches by up to 3.3times even for DNNs that are widely used and heavily optimized. Mirage is publicly available at https://github.com/mirage-project/mirage.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper