new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters

Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.

  • 17 authors
·
Oct 21, 2024

ARC-Chapter: Structuring Hour-Long Videos into Navigable Chapters and Hierarchical Summaries

The proliferation of hour-long videos (e.g., lectures, podcasts, documentaries) has intensified demand for efficient content structuring. However, existing approaches are constrained by small-scale training with annotations that are typical short and coarse, restricting generalization to nuanced transitions in long videos. We introduce ARC-Chapter, the first large-scale video chaptering model trained on over million-level long video chapters, featuring bilingual, temporally grounded, and hierarchical chapter annotations. To achieve this goal, we curated a bilingual English-Chinese chapter dataset via a structured pipeline that unifies ASR transcripts, scene texts, visual captions into multi-level annotations, from short title to long summaries. We demonstrate clear performance improvements with data scaling, both in data volume and label intensity. Moreover, we design a new evaluation metric termed GRACE, which incorporates many-to-one segment overlaps and semantic similarity, better reflecting real-world chaptering flexibility. Extensive experiments demonstrate that ARC-Chapter establishes a new state-of-the-art by a significant margin, outperforming the previous best by 14.0% in F1 score and 11.3% in SODA score. Moreover, ARC-Chapter shows excellent transferability, improving the state-of-the-art on downstream tasks like dense video captioning on YouCook2.

TencentARC ARC Lab, Tencent PCG
·
Nov 18, 2025 2