Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeParameter-efficient Prompt Learning for 3D Point Cloud Understanding
This paper presents a parameter-efficient prompt tuning method, named PPT, to adapt a large multi-modal model for 3D point cloud understanding. Existing strategies are quite expensive in computation and storage, and depend on time-consuming prompt engineering. We address the problems from three aspects. Firstly, a PromptLearner module is devised to replace hand-crafted prompts with learnable contexts to automate the prompt tuning process. Then, we lock the pre-trained backbone instead of adopting the full fine-tuning paradigm to substantially improve the parameter efficiency. Finally, a lightweight PointAdapter module is arranged near target tasks to enhance prompt tuning for 3D point cloud understanding. Comprehensive experiments are conducted to demonstrate the superior parameter and data efficiency of the proposed method.Meanwhile, we obtain new records on 4 public datasets and multiple 3D tasks, i.e., point cloud recognition, few-shot learning, and part segmentation. The implementation is available at https://github.com/auniquesun/PPT.
Generalized Few-shot 3D Point Cloud Segmentation with Vision-Language Model
Generalized few-shot 3D point cloud segmentation (GFS-PCS) adapts models to new classes with few support samples while retaining base class segmentation. Existing GFS-PCS methods enhance prototypes via interacting with support or query features but remain limited by sparse knowledge from few-shot samples. Meanwhile, 3D vision-language models (3D VLMs), generalizing across open-world novel classes, contain rich but noisy novel class knowledge. In this work, we introduce a GFS-PCS framework that synergizes dense but noisy pseudo-labels from 3D VLMs with precise yet sparse few-shot samples to maximize the strengths of both, named GFS-VL. Specifically, we present a prototype-guided pseudo-label selection to filter low-quality regions, followed by an adaptive infilling strategy that combines knowledge from pseudo-label contexts and few-shot samples to adaptively label the filtered, unlabeled areas. Additionally, we design a novel-base mix strategy to embed few-shot samples into training scenes, preserving essential context for improved novel class learning. Moreover, recognizing the limited diversity in current GFS-PCS benchmarks, we introduce two challenging benchmarks with diverse novel classes for comprehensive generalization evaluation. Experiments validate the effectiveness of our framework across models and datasets. Our approach and benchmarks provide a solid foundation for advancing GFS-PCS in the real world. The code is at https://github.com/ZhaochongAn/GFS-VL
Generalized Few-Shot Point Cloud Segmentation Via Geometric Words
Existing fully-supervised point cloud segmentation methods suffer in the dynamic testing environment with emerging new classes. Few-shot point cloud segmentation algorithms address this problem by learning to adapt to new classes at the sacrifice of segmentation accuracy for the base classes, which severely impedes its practicality. This largely motivates us to present the first attempt at a more practical paradigm of generalized few-shot point cloud segmentation, which requires the model to generalize to new categories with only a few support point clouds and simultaneously retain the capability to segment base classes. We propose the geometric words to represent geometric components shared between the base and novel classes, and incorporate them into a novel geometric-aware semantic representation to facilitate better generalization to the new classes without forgetting the old ones. Moreover, we introduce geometric prototypes to guide the segmentation with geometric prior knowledge. Extensive experiments on S3DIS and ScanNet consistently illustrate the superior performance of our method over baseline methods. Our code is available at: https://github.com/Pixie8888/GFS-3DSeg_GWs.
Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis
This paper proposes a general solution to enable point cloud recognition models to handle distribution shifts at test time. Unlike prior methods, which rely heavily on training data (often inaccessible during online inference) and are limited to recognizing a fixed set of point cloud classes predefined during training, we explore a more practical and challenging scenario: adapting the model solely based on online test data to recognize both previously seen classes and novel, unseen classes at test time. To this end, we develop Point-Cache, a hierarchical cache model that captures essential clues of online test samples, particularly focusing on the global structure of point clouds and their local-part details. Point-Cache, which serves as a rich 3D knowledge base, is dynamically managed to prioritize the inclusion of high-quality samples. Designed as a plug-and-play module, our method can be flexibly integrated into large multimodal 3D models to support open-vocabulary point cloud recognition. Notably, our solution operates with efficiency comparable to zero-shot inference, as it is entirely training-free. Point-Cache demonstrates substantial gains across 8 challenging benchmarks and 4 representative large 3D models, highlighting its effectiveness. Code is available at https://github.com/auniquesun/Point-Cache.
Multimodality Helps Few-shot 3D Point Cloud Semantic Segmentation
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal annotated support samples. While existing FS-PCS methods have shown promise, they primarily focus on unimodal point cloud inputs, overlooking the potential benefits of leveraging multimodal information. In this paper, we address this gap by introducing a multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality. Under this easy-to-achieve setup, we present the MultiModal Few-Shot SegNet (MM-FSS), a model effectively harnessing complementary information from multiple modalities. MM-FSS employs a shared backbone with two heads to extract intermodal and unimodal visual features, and a pretrained text encoder to generate text embeddings. To fully exploit the multimodal information, we propose a Multimodal Correlation Fusion (MCF) module to generate multimodal correlations, and a Multimodal Semantic Fusion (MSF) module to refine the correlations using text-aware semantic guidance. Additionally, we propose a simple yet effective Test-time Adaptive Cross-modal Calibration (TACC) technique to mitigate training bias, further improving generalization. Experimental results on S3DIS and ScanNet datasets demonstrate significant performance improvements achieved by our method. The efficacy of our approach indicates the benefits of leveraging commonly-ignored free modalities for FS-PCS, providing valuable insights for future research. The code is available at https://github.com/ZhaochongAn/Multimodality-3D-Few-Shot
See More and Know More: Zero-shot Point Cloud Segmentation via Multi-modal Visual Data
Zero-shot point cloud segmentation aims to make deep models capable of recognizing novel objects in point cloud that are unseen in the training phase. Recent trends favor the pipeline which transfers knowledge from seen classes with labels to unseen classes without labels. They typically align visual features with semantic features obtained from word embedding by the supervision of seen classes' annotations. However, point cloud contains limited information to fully match with semantic features. In fact, the rich appearance information of images is a natural complement to the textureless point cloud, which is not well explored in previous literature. Motivated by this, we propose a novel multi-modal zero-shot learning method to better utilize the complementary information of point clouds and images for more accurate visual-semantic alignment. Extensive experiments are performed in two popular benchmarks, i.e., SemanticKITTI and nuScenes, and our method outperforms current SOTA methods with 52% and 49% improvement on average for unseen class mIoU, respectively.
Benchmarking and Analyzing Point Cloud Classification under Corruptions
3D perception, especially point cloud classification, has achieved substantial progress. However, in real-world deployment, point cloud corruptions are inevitable due to the scene complexity, sensor inaccuracy, and processing imprecision. In this work, we aim to rigorously benchmark and analyze point cloud classification under corruptions. To conduct a systematic investigation, we first provide a taxonomy of common 3D corruptions and identify the atomic corruptions. Then, we perform a comprehensive evaluation on a wide range of representative point cloud models to understand their robustness and generalizability. Our benchmark results show that although point cloud classification performance improves over time, the state-of-the-art methods are on the verge of being less robust. Based on the obtained observations, we propose several effective techniques to enhance point cloud classifier robustness. We hope our comprehensive benchmark, in-depth analysis, and proposed techniques could spark future research in robust 3D perception.
Clustering based Point Cloud Representation Learning for 3D Analysis
Point cloud analysis (such as 3D segmentation and detection) is a challenging task, because of not only the irregular geometries of many millions of unordered points, but also the great variations caused by depth, viewpoint, occlusion, etc. Current studies put much focus on the adaption of neural networks to the complex geometries of point clouds, but are blind to a fundamental question: how to learn an appropriate point embedding space that is aware of both discriminative semantics and challenging variations? As a response, we propose a clustering based supervised learning scheme for point cloud analysis. Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space for automatically discovering subclass patterns which are latent yet representative across scenes. The mined patterns are, in turn, used to repaint the embedding space, so as to respect the underlying distribution of the entire training dataset and improve the robustness to the variations. Our algorithm is principled and readily pluggable to modern point cloud segmentation networks during training, without extra overhead during testing. With various 3D network architectures (i.e., voxel-based, point-based, Transformer-based, automatically searched), our algorithm shows notable improvements on famous point cloud segmentation datasets (i.e.,2.0-2.6% on single-scan and 2.0-2.2% multi-scan of SemanticKITTI, 1.8-1.9% on S3DIS, in terms of mIoU). Our algorithm also demonstrates utility in 3D detection, showing 2.0-3.4% mAP gains on KITTI.
FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments
We introduce the Few-Shot Object Learning (FewSOL) dataset for object recognition with a few images per object. We captured 336 real-world objects with 9 RGB-D images per object from different views. Object segmentation masks, object poses and object attributes are provided. In addition, synthetic images generated using 330 3D object models are used to augment the dataset. We investigated (i) few-shot object classification and (ii) joint object segmentation and few-shot classification with the state-of-the-art methods for few-shot learning and meta-learning using our dataset. The evaluation results show that there is still a large margin to be improved for few-shot object classification in robotic environments. Our dataset can be used to study a set of few-shot object recognition problems such as classification, detection and segmentation, shape reconstruction, pose estimation, keypoint correspondences and attribute recognition. The dataset and code are available at https://irvlutd.github.io/FewSOL.
PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation
We present PointFusion, a generic 3D object detection method that leverages both image and 3D point cloud information. Unlike existing methods that either use multi-stage pipelines or hold sensor and dataset-specific assumptions, PointFusion is conceptually simple and application-agnostic. The image data and the raw point cloud data are independently processed by a CNN and a PointNet architecture, respectively. The resulting outputs are then combined by a novel fusion network, which predicts multiple 3D box hypotheses and their confidences, using the input 3D points as spatial anchors. We evaluate PointFusion on two distinctive datasets: the KITTI dataset that features driving scenes captured with a lidar-camera setup, and the SUN-RGBD dataset that captures indoor environments with RGB-D cameras. Our model is the first one that is able to perform better or on-par with the state-of-the-art on these diverse datasets without any dataset-specific model tuning.
Point-Plane Projections for Accurate LiDAR Semantic Segmentation in Small Data Scenarios
LiDAR point cloud semantic segmentation is essential for interpreting 3D environments in applications such as autonomous driving and robotics. Recent methods achieve strong performance by exploiting different point cloud representations or incorporating data from other sensors, such as cameras or external datasets. However, these approaches often suffer from high computational complexity and require large amounts of training data, limiting their generalization in data-scarce scenarios. In this paper, we improve the performance of point-based methods by effectively learning features from 2D representations through point-plane projections, enabling the extraction of complementary information while relying solely on LiDAR data. Additionally, we introduce a geometry-aware technique for data augmentation that aligns with LiDAR sensor properties and mitigates class imbalance. We implemented and evaluated our method that applies point-plane projections onto multiple informative 2D representations of the point cloud. Experiments demonstrate that this approach leads to significant improvements in limited-data scenarios, while also achieving competitive results on two publicly available standard datasets, as SemanticKITTI and PandaSet. The code of our method is available at https://github.com/SiMoM0/3PNet
LAHNet: Local Attentive Hashing Network for Point Cloud Registration
Most existing learning-based point cloud descriptors for point cloud registration focus on perceiving local information of point clouds to generate distinctive features. However, a reasonable and broader receptive field is essential for enhancing feature distinctiveness. In this paper, we propose a Local Attentive Hashing Network for point cloud registration, called LAHNet, which introduces a local attention mechanism with the inductive bias of locality of convolution-like operators into point cloud descriptors. Specifically, a Group Transformer is designed to capture reasonable long-range context between points. This employs a linear neighborhood search strategy, Locality-Sensitive Hashing, enabling uniformly partitioning point clouds into non-overlapping windows. Meanwhile, an efficient cross-window strategy is adopted to further expand the reasonable feature receptive field. Furthermore, building on this effective windowing strategy, we propose an Interaction Transformer to enhance the feature interactions of the overlap regions within point cloud pairs. This computes an overlap matrix to match overlap regions between point cloud pairs by representing each window as a global signal. Extensive results demonstrate that LAHNet can learn robust and distinctive features, achieving significant registration results on real-world indoor and outdoor benchmarks.
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
Existing Transformer-based models for point cloud analysis suffer from quadratic complexity, leading to compromised point cloud resolution and information loss. In contrast, the newly proposed Mamba model, based on state space models (SSM), outperforms Transformer in multiple areas with only linear complexity. However, the straightforward adoption of Mamba does not achieve satisfactory performance on point cloud tasks. In this work, we present Mamba3D, a state space model tailored for point cloud learning to enhance local feature extraction, achieving superior performance, high efficiency, and scalability potential. Specifically, we propose a simple yet effective Local Norm Pooling (LNP) block to extract local geometric features. Additionally, to obtain better global features, we introduce a bidirectional SSM (bi-SSM) with both a token forward SSM and a novel backward SSM that operates on the feature channel. Extensive experimental results show that Mamba3D surpasses Transformer-based counterparts and concurrent works in multiple tasks, with or without pre-training. Notably, Mamba3D achieves multiple SoTA, including an overall accuracy of 92.6% (train from scratch) on the ScanObjectNN and 95.1% (with single-modal pre-training) on the ModelNet40 classification task, with only linear complexity.
SC3K: Self-supervised and Coherent 3D Keypoints Estimation from Rotated, Noisy, and Decimated Point Cloud Data
This paper proposes a new method to infer keypoints from arbitrary object categories in practical scenarios where point cloud data (PCD) are noisy, down-sampled and arbitrarily rotated. Our proposed model adheres to the following principles: i) keypoints inference is fully unsupervised (no annotation given), ii) keypoints position error should be low and resilient to PCD perturbations (robustness), iii) keypoints should not change their indexes for the intra-class objects (semantic coherence), iv) keypoints should be close to or proximal to PCD surface (compactness). We achieve these desiderata by proposing a new self-supervised training strategy for keypoints estimation that does not assume any a priori knowledge of the object class, and a model architecture with coupled auxiliary losses that promotes the desired keypoints properties. We compare the keypoints estimated by the proposed approach with those of the state-of-the-art unsupervised approaches. The experiments show that our approach outperforms by estimating keypoints with improved coverage (+9.41%) while being semantically consistent (+4.66%) that best characterizes the object's 3D shape for downstream tasks. Code and data are available at: https://github.com/IITPAVIS/SC3K
Deep Hough Voting for Robust Global Registration
Point cloud registration is the task of estimating the rigid transformation that aligns a pair of point cloud fragments. We present an efficient and robust framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space. First, deep geometric features are extracted from a point cloud pair to compute putative correspondences. We then construct a set of triplets of correspondences to cast votes on the 6D Hough space, representing the transformation parameters in sparse tensors. Next, a fully convolutional refinement module is applied to refine the noisy votes. Finally, we identify the consensus among the correspondences from the Hough space, which we use to predict our final transformation parameters. Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset. We further demonstrate the generalizability of our approach by setting a new state-of-the-art on ICL-NUIM dataset, where we integrate our module into a multi-way registration pipeline.
EPiC: Ensemble of Partial Point Clouds for Robust Classification
Robust point cloud classification is crucial for real-world applications, as consumer-type 3D sensors often yield partial and noisy data, degraded by various artifacts. In this work we propose a general ensemble framework, based on partial point cloud sampling. Each ensemble member is exposed to only partial input data. Three sampling strategies are used jointly, two local ones, based on patches and curves, and a global one of random sampling. We demonstrate the robustness of our method to various local and global degradations. We show that our framework significantly improves the robustness of top classification netowrks by a large margin. Our experimental setting uses the recently introduced ModelNet-C database by Ren et al.[24], where we reach SOTA both on unaugmented and on augmented data. Our unaugmented mean Corruption Error (mCE) is 0.64 (current SOTA is 0.86) and 0.50 for augmented data (current SOTA is 0.57). We analyze and explain these remarkable results through diversity analysis. Our code is available at: https://github.com/yossilevii100/EPiC
Point2Point : A Framework for Efficient Deep Learning on Hilbert sorted Point Clouds with applications in Spatio-Temporal Occupancy Prediction
The irregularity and permutation invariance of point cloud data pose challenges for effective learning. Conventional methods for addressing this issue involve converting raw point clouds to intermediate representations such as 3D voxel grids or range images. While such intermediate representations solve the problem of permutation invariance, they can result in significant loss of information. Approaches that do learn on raw point clouds either have trouble in resolving neighborhood relationships between points or are too complicated in their formulation. In this paper, we propose a novel approach to representing point clouds as a locality preserving 1D ordering induced by the Hilbert space-filling curve. We also introduce Point2Point, a neural architecture that can effectively learn on Hilbert-sorted point clouds. We show that Point2Point shows competitive performance on point cloud segmentation and generation tasks. Finally, we show the performance of Point2Point on Spatio-temporal Occupancy prediction from Point clouds.
HyMamba: Mamba with Hybrid Geometry-Feature Coupling for Efficient Point Cloud Classification
Point cloud classification is one of the essential technologies for achieving intelligent perception of 3D environments by machines, its core challenge is to efficiently extract local and global features. Mamba leverages state space models (SSMs) for global point cloud modeling. Although prior Mamba-based point cloud processing methods pay attention to the limitation of its flattened sequence modeling mechanism in fusing local and global features, the critical issue of weakened local geometric relevance caused by decoupling geometric structures and features in the input patches remains not fully revealed, and both jointly limit local feature extraction. Therefore, we propose HyMamba, a geometry and feature coupled Mamba framework featuring: (1) Geometry-Feature Coupled Pooling (GFCP), which achieves physically interpretable geometric information coupling by dynamically aggregating adjacent geometric information into local features; (2) Collaborative Feature Enhancer (CoFE), which enhances sparse signal capture through cross-path feature hybridization while effectively integrating global and local contexts. We conducted extensive experiments on ModelNet40 and ScanObjectNN datasets. The results demonstrate that the proposed model achieves superior classification performance, particularly on the ModelNet40, where it elevates accuracy to 95.99% with merely 0.03M additional parameters. Furthermore, it attains 98.9% accuracy on the ModelNetFewShot dataset, validating its robust generalization capabilities under sparse samples. Our code and weights are available at https://github.com/L1277471578/HyMamba
Density-invariant Features for Distant Point Cloud Registration
Registration of distant outdoor LiDAR point clouds is crucial to extending the 3D vision of collaborative autonomous vehicles, and yet is challenging due to small overlapping area and a huge disparity between observed point densities. In this paper, we propose Group-wise Contrastive Learning (GCL) scheme to extract density-invariant geometric features to register distant outdoor LiDAR point clouds. We mark through theoretical analysis and experiments that, contrastive positives should be independent and identically distributed (i.i.d.), in order to train densityinvariant feature extractors. We propose upon the conclusion a simple yet effective training scheme to force the feature of multiple point clouds in the same spatial location (referred to as positive groups) to be similar, which naturally avoids the sampling bias introduced by a pair of point clouds to conform with the i.i.d. principle. The resulting fully-convolutional feature extractor is more powerful and density-invariant than state-of-the-art methods, improving the registration recall of distant scenarios on KITTI and nuScenes benchmarks by 40.9% and 26.9%, respectively. Code is available at https://github.com/liuQuan98/GCL.
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features
With the immense growth of dataset sizes and computing resources in recent years, so-called foundation models have become popular in NLP and vision tasks. In this work, we propose to explore foundation models for the task of keypoint detection on 3D shapes. A unique characteristic of keypoint detection is that it requires semantic and geometric awareness while demanding high localization accuracy. To address this problem, we propose, first, to back-project features from large pre-trained 2D vision models onto 3D shapes and employ them for this task. We show that we obtain robust 3D features that contain rich semantic information and analyze multiple candidate features stemming from different 2D foundation models. Second, we employ a keypoint candidate optimization module which aims to match the average observed distribution of keypoints on the shape and is guided by the back-projected features. The resulting approach achieves a new state of the art for few-shot keypoint detection on the KeyPointNet dataset, almost doubling the performance of the previous best methods.
3D Registration for Self-Occluded Objects in Context
While much progress has been made on the task of 3D point cloud registration, there still exists no learning-based method able to estimate the 6D pose of an object observed by a 2.5D sensor in a scene. The challenges of this scenario include the fact that most measurements are outliers depicting the object's surrounding context, and the mismatch between the complete 3D object model and its self-occluded observations. We introduce the first deep learning framework capable of effectively handling this scenario. Our method consists of an instance segmentation module followed by a pose estimation one. It allows us to perform 3D registration in a one-shot manner, without requiring an expensive iterative procedure. We further develop an on-the-fly rendering-based training strategy that is both time- and memory-efficient. Our experiments evidence the superiority of our approach over the state-of-the-art traditional and learning-based 3D registration methods.
GeoMAE: Masked Geometric Target Prediction for Self-supervised Point Cloud Pre-Training
This paper tries to address a fundamental question in point cloud self-supervised learning: what is a good signal we should leverage to learn features from point clouds without annotations? To answer that, we introduce a point cloud representation learning framework, based on geometric feature reconstruction. In contrast to recent papers that directly adopt masked autoencoder (MAE) and only predict original coordinates or occupancy from masked point clouds, our method revisits differences between images and point clouds and identifies three self-supervised learning objectives peculiar to point clouds, namely centroid prediction, normal estimation, and curvature prediction. Combined with occupancy prediction, these four objectives yield an nontrivial self-supervised learning task and mutually facilitate models to better reason fine-grained geometry of point clouds. Our pipeline is conceptually simple and it consists of two major steps: first, it randomly masks out groups of points, followed by a Transformer-based point cloud encoder; second, a lightweight Transformer decoder predicts centroid, normal, and curvature for points in each voxel. We transfer the pre-trained Transformer encoder to a downstream peception model. On the nuScene Datset, our model achieves 3.38 mAP improvment for object detection, 2.1 mIoU gain for segmentation, and 1.7 AMOTA gain for multi-object tracking. We also conduct experiments on the Waymo Open Dataset and achieve significant performance improvements over baselines as well.
Masked Autoencoders for Point Cloud Self-supervised Learning
As a promising scheme of self-supervised learning, masked autoencoding has significantly advanced natural language processing and computer vision. Inspired by this, we propose a neat scheme of masked autoencoders for point cloud self-supervised learning, addressing the challenges posed by point cloud's properties, including leakage of location information and uneven information density. Concretely, we divide the input point cloud into irregular point patches and randomly mask them at a high ratio. Then, a standard Transformer based autoencoder, with an asymmetric design and a shifting mask tokens operation, learns high-level latent features from unmasked point patches, aiming to reconstruct the masked point patches. Extensive experiments show that our approach is efficient during pre-training and generalizes well on various downstream tasks. Specifically, our pre-trained models achieve 85.18% accuracy on ScanObjectNN and 94.04% accuracy on ModelNet40, outperforming all the other self-supervised learning methods. We show with our scheme, a simple architecture entirely based on standard Transformers can surpass dedicated Transformer models from supervised learning. Our approach also advances state-of-the-art accuracies by 1.5%-2.3% in the few-shot object classification. Furthermore, our work inspires the feasibility of applying unified architectures from languages and images to the point cloud.
Masked Spatio-Temporal Structure Prediction for Self-supervised Learning on Point Cloud Videos
Recently, the community has made tremendous progress in developing effective methods for point cloud video understanding that learn from massive amounts of labeled data. However, annotating point cloud videos is usually notoriously expensive. Moreover, training via one or only a few traditional tasks (e.g., classification) may be insufficient to learn subtle details of the spatio-temporal structure existing in point cloud videos. In this paper, we propose a Masked Spatio-Temporal Structure Prediction (MaST-Pre) method to capture the structure of point cloud videos without human annotations. MaST-Pre is based on spatio-temporal point-tube masking and consists of two self-supervised learning tasks. First, by reconstructing masked point tubes, our method is able to capture the appearance information of point cloud videos. Second, to learn motion, we propose a temporal cardinality difference prediction task that estimates the change in the number of points within a point tube. In this way, MaST-Pre is forced to model the spatial and temporal structure in point cloud videos. Extensive experiments on MSRAction-3D, NTU-RGBD, NvGesture, and SHREC'17 demonstrate the effectiveness of the proposed method.
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling
We present Point-BERT, a new paradigm for learning Transformers to generalize the concept of BERT to 3D point cloud. Inspired by BERT, we devise a Masked Point Modeling (MPM) task to pre-train point cloud Transformers. Specifically, we first divide a point cloud into several local point patches, and a point cloud Tokenizer with a discrete Variational AutoEncoder (dVAE) is designed to generate discrete point tokens containing meaningful local information. Then, we randomly mask out some patches of input point clouds and feed them into the backbone Transformers. The pre-training objective is to recover the original point tokens at the masked locations under the supervision of point tokens obtained by the Tokenizer. Extensive experiments demonstrate that the proposed BERT-style pre-training strategy significantly improves the performance of standard point cloud Transformers. Equipped with our pre-training strategy, we show that a pure Transformer architecture attains 93.8% accuracy on ModelNet40 and 83.1% accuracy on the hardest setting of ScanObjectNN, surpassing carefully designed point cloud models with much fewer hand-made designs. We also demonstrate that the representations learned by Point-BERT transfer well to new tasks and domains, where our models largely advance the state-of-the-art of few-shot point cloud classification task. The code and pre-trained models are available at https://github.com/lulutang0608/Point-BERT
Cross-modal Learning for Image-Guided Point Cloud Shape Completion
In this paper we explore the recent topic of point cloud completion, guided by an auxiliary image. We show how it is possible to effectively combine the information from the two modalities in a localized latent space, thus avoiding the need for complex point cloud reconstruction methods from single views used by the state-of-the-art. We also investigate a novel weakly-supervised setting where the auxiliary image provides a supervisory signal to the training process by using a differentiable renderer on the completed point cloud to measure fidelity in the image space. Experiments show significant improvements over state-of-the-art supervised methods for both unimodal and multimodal completion. We also show the effectiveness of the weakly-supervised approach which outperforms a number of supervised methods and is competitive with the latest supervised models only exploiting point cloud information.
Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
In the context of few-shot classification, the goal is to train a classifier using a limited number of samples while maintaining satisfactory performance. However, traditional metric-based methods exhibit certain limitations in achieving this objective. These methods typically rely on a single distance value between the query feature and support feature, thereby overlooking the contribution of shallow features. To overcome this challenge, we propose a novel approach in this paper. Our approach involves utilizing a multi-output embedding network that maps samples into distinct feature spaces. The proposed method extracts feature vectors at different stages, enabling the model to capture both global and abstract features. By utilizing these diverse feature spaces, our model enhances its performance. Moreover, employing a self-attention mechanism improves the refinement of features at each stage, leading to even more robust representations and improved overall performance. Furthermore, assigning learnable weights to each stage significantly improved performance and results. We conducted comprehensive evaluations on the MiniImageNet and FC100 datasets, specifically in the 5-way 1-shot and 5-way 5-shot scenarios. Additionally, we performed cross-domain tasks across eight benchmark datasets, achieving high accuracy in the testing domains. These evaluations demonstrate the efficacy of our proposed method in comparison to state-of-the-art approaches. https://github.com/FatemehAskari/MSENet
SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects
To enable meaningful robotic manipulation of objects in the real-world, 6D pose estimation is one of the critical aspects. Most existing approaches have difficulties to extend predictions to scenarios where novel object instances are continuously introduced, especially with heavy occlusions. In this work, we propose a few-shot pose estimation (FSPE) approach called SA6D, which uses a self-adaptive segmentation module to identify the novel target object and construct a point cloud model of the target object using only a small number of cluttered reference images. Unlike existing methods, SA6D does not require object-centric reference images or any additional object information, making it a more generalizable and scalable solution across categories. We evaluate SA6D on real-world tabletop object datasets and demonstrate that SA6D outperforms existing FSPE methods, particularly in cluttered scenes with occlusions, while requiring fewer reference images.
EP2P-Loc: End-to-End 3D Point to 2D Pixel Localization for Large-Scale Visual Localization
Visual localization is the task of estimating a 6-DoF camera pose of a query image within a provided 3D reference map. Thanks to recent advances in various 3D sensors, 3D point clouds are becoming a more accurate and affordable option for building the reference map, but research to match the points of 3D point clouds with pixels in 2D images for visual localization remains challenging. Existing approaches that jointly learn 2D-3D feature matching suffer from low inliers due to representational differences between the two modalities, and the methods that bypass this problem into classification have an issue of poor refinement. In this work, we propose EP2P-Loc, a novel large-scale visual localization method that mitigates such appearance discrepancy and enables end-to-end training for pose estimation. To increase the number of inliers, we propose a simple algorithm to remove invisible 3D points in the image, and find all 2D-3D correspondences without keypoint detection. To reduce memory usage and search complexity, we take a coarse-to-fine approach where we extract patch-level features from 2D images, then perform 2D patch classification on each 3D point, and obtain the exact corresponding 2D pixel coordinates through positional encoding. Finally, for the first time in this task, we employ a differentiable PnP for end-to-end training. In the experiments on newly curated large-scale indoor and outdoor benchmarks based on 2D-3D-S and KITTI, we show that our method achieves the state-of-the-art performance compared to existing visual localization and image-to-point cloud registration methods.
Point2Vec for Self-Supervised Representation Learning on Point Clouds
Recently, the self-supervised learning framework data2vec has shown inspiring performance for various modalities using a masked student-teacher approach. However, it remains open whether such a framework generalizes to the unique challenges of 3D point clouds. To answer this question, we extend data2vec to the point cloud domain and report encouraging results on several downstream tasks. In an in-depth analysis, we discover that the leakage of positional information reveals the overall object shape to the student even under heavy masking and thus hampers data2vec to learn strong representations for point clouds. We address this 3D-specific shortcoming by proposing point2vec, which unleashes the full potential of data2vec-like pre-training on point clouds. Our experiments show that point2vec outperforms other self-supervised methods on shape classification and few-shot learning on ModelNet40 and ScanObjectNN, while achieving competitive results on part segmentation on ShapeNetParts. These results suggest that the learned representations are strong and transferable, highlighting point2vec as a promising direction for self-supervised learning of point cloud representations.
CPCM: Contextual Point Cloud Modeling for Weakly-supervised Point Cloud Semantic Segmentation
We study the task of weakly-supervised point cloud semantic segmentation with sparse annotations (e.g., less than 0.1% points are labeled), aiming to reduce the expensive cost of dense annotations. Unfortunately, with extremely sparse annotated points, it is very difficult to extract both contextual and object information for scene understanding such as semantic segmentation. Motivated by masked modeling (e.g., MAE) in image and video representation learning, we seek to endow the power of masked modeling to learn contextual information from sparsely-annotated points. However, directly applying MAE to 3D point clouds with sparse annotations may fail to work. First, it is nontrivial to effectively mask out the informative visual context from 3D point clouds. Second, how to fully exploit the sparse annotations for context modeling remains an open question. In this paper, we propose a simple yet effective Contextual Point Cloud Modeling (CPCM) method that consists of two parts: a region-wise masking (RegionMask) strategy and a contextual masked training (CMT) method. Specifically, RegionMask masks the point cloud continuously in geometric space to construct a meaningful masked prediction task for subsequent context learning. CMT disentangles the learning of supervised segmentation and unsupervised masked context prediction for effectively learning the very limited labeled points and mass unlabeled points, respectively. Extensive experiments on the widely-tested ScanNet V2 and S3DIS benchmarks demonstrate the superiority of CPCM over the state-of-the-art.
Feature Aligning Few shot Learning Method Using Local Descriptors Weighted Rules
Few-shot classification involves identifying new categories using a limited number of labeled samples. Current few-shot classification methods based on local descriptors primarily leverage underlying consistent features across visible and invisible classes, facing challenges including redundant neighboring information, noisy representations, and limited interpretability. This paper proposes a Feature Aligning Few-shot Learning Method Using Local Descriptors Weighted Rules (FAFD-LDWR). It innovatively introduces a cross-normalization method into few-shot image classification to preserve the discriminative information of local descriptors as much as possible; and enhances classification performance by aligning key local descriptors of support and query sets to remove background noise. FAFD-LDWR performs excellently on three benchmark datasets , outperforming state-of-the-art methods in both 1-shot and 5-shot settings. The designed visualization experiments also demonstrate FAFD-LDWR's improvement in prediction interpretability.
Distilling 3D distinctive local descriptors for 6D pose estimation
Three-dimensional local descriptors are crucial for encoding geometric surface properties, making them essential for various point cloud understanding tasks. Among these descriptors, GeDi has demonstrated strong zero-shot 6D pose estimation capabilities but remains computationally impractical for real-world applications due to its expensive inference process. Can we retain GeDi's effectiveness while significantly improving its efficiency? In this paper, we explore this question by introducing a knowledge distillation framework that trains an efficient student model to regress local descriptors from a GeDi teacher. Our key contributions include: an efficient large-scale training procedure that ensures robustness to occlusions and partial observations while operating under compute and storage constraints, and a novel loss formulation that handles weak supervision from non-distinctive teacher descriptors. We validate our approach on five BOP Benchmark datasets and demonstrate a significant reduction in inference time while maintaining competitive performance with existing methods, bringing zero-shot 6D pose estimation closer to real-time feasibility. Project Website: https://tev-fbk.github.io/dGeDi/
CASSPR: Cross Attention Single Scan Place Recognition
Place recognition based on point clouds (LiDAR) is an important component for autonomous robots or self-driving vehicles. Current SOTA performance is achieved on accumulated LiDAR submaps using either point-based or voxel-based structures. While voxel-based approaches nicely integrate spatial context across multiple scales, they do not exhibit the local precision of point-based methods. As a result, existing methods struggle with fine-grained matching of subtle geometric features in sparse single-shot Li- DAR scans. To overcome these limitations, we propose CASSPR as a method to fuse point-based and voxel-based approaches using cross attention transformers. CASSPR leverages a sparse voxel branch for extracting and aggregating information at lower resolution and a point-wise branch for obtaining fine-grained local information. CASSPR uses queries from one branch to try to match structures in the other branch, ensuring that both extract self-contained descriptors of the point cloud (rather than one branch dominating), but using both to inform the output global descriptor of the point cloud. Extensive experiments show that CASSPR surpasses the state-of-the-art by a large margin on several datasets (Oxford RobotCar, TUM, USyd). For instance, it achieves AR@1 of 85.6% on the TUM dataset, surpassing the strongest prior model by ~15%. Our code is publicly available.
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
In this paper, we propose a novel local descriptor-based framework, called You Only Hypothesize Once (YOHO), for the registration of two unaligned point clouds. In contrast to most existing local descriptors which rely on a fragile local reference frame to gain rotation invariance, the proposed descriptor achieves the rotation invariance by recent technologies of group equivariant feature learning, which brings more robustness to point density and noise. Meanwhile, the descriptor in YOHO also has a rotation equivariant part, which enables us to estimate the registration from just one correspondence hypothesis. Such property reduces the searching space for feasible transformations, thus greatly improves both the accuracy and the efficiency of YOHO. Extensive experiments show that YOHO achieves superior performances with much fewer needed RANSAC iterations on four widely-used datasets, the 3DMatch/3DLoMatch datasets, the ETH dataset and the WHU-TLS dataset. More details are shown in our project page: https://hpwang-whu.github.io/YOHO/.
Enhancing Sampling Protocol for Point Cloud Classification Against Corruptions
Established sampling protocols for 3D point cloud learning, such as Farthest Point Sampling (FPS) and Fixed Sample Size (FSS), have long been relied upon. However, real-world data often suffer from corruptions, such as sensor noise, which violates the benign data assumption in current protocols. As a result, these protocols are highly vulnerable to noise, posing significant safety risks in critical applications like autonomous driving. To address these issues, we propose an enhanced point cloud sampling protocol, PointSP, designed to improve robustness against point cloud corruptions. PointSP incorporates key point reweighting to mitigate outlier sensitivity and ensure the selection of representative points. It also introduces a local-global balanced downsampling strategy, which allows for scalable and adaptive sampling while maintaining geometric consistency. Additionally, a lightweight tangent plane interpolation method is used to preserve local geometry while enhancing the density of the point cloud. Unlike learning-based approaches that require additional model training, PointSP is architecture-agnostic, requiring no extra learning or modification to the network. This enables seamless integration into existing pipelines. Extensive experiments on synthetic and real-world corrupted datasets show that PointSP significantly improves the robustness and accuracy of point cloud classification, outperforming state-of-the-art methods across multiple benchmarks.
Transductive Few-Shot Learning: Clustering is All You Need?
We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.
PointGauss: Point Cloud-Guided Multi-Object Segmentation for Gaussian Splatting
We introduce PointGauss, a novel point cloud-guided framework for real-time multi-object segmentation in Gaussian Splatting representations. Unlike existing methods that suffer from prolonged initialization and limited multi-view consistency, our approach achieves efficient 3D segmentation by directly parsing Gaussian primitives through a point cloud segmentation-driven pipeline. The key innovation lies in two aspects: (1) a point cloud-based Gaussian primitive decoder that generates 3D instance masks within 1 minute, and (2) a GPU-accelerated 2D mask rendering system that ensures multi-view consistency. Extensive experiments demonstrate significant improvements over previous state-of-the-art methods, achieving performance gains of 1.89 to 31.78% in multi-view mIoU, while maintaining superior computational efficiency. To address the limitations of current benchmarks (single-object focus, inconsistent 3D evaluation, small scale, and partial coverage), we present DesktopObjects-360, a novel comprehensive dataset for 3D segmentation in radiance fields, featuring: (1) complex multi-object scenes, (2) globally consistent 2D annotations, (3) large-scale training data (over 27 thousand 2D masks), (4) full 360{\deg} coverage, and (5) 3D evaluation masks.
Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges
An essential prerequisite for unleashing the potential of supervised deep learning algorithms in the area of 3D scene understanding is the availability of large-scale and richly annotated datasets. However, publicly available datasets are either in relative small spatial scales or have limited semantic annotations due to the expensive cost of data acquisition and data annotation, which severely limits the development of fine-grained semantic understanding in the context of 3D point clouds. In this paper, we present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points, which is three times the number of labeled points than the existing largest photogrammetric point cloud dataset. Our dataset consists of large areas from three UK cities, covering about 7.6 km^2 of the city landscape. In the dataset, each 3D point is labeled as one of 13 semantic classes. We extensively evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results. In particular, we identify several key challenges towards urban-scale point cloud understanding. The dataset is available at https://github.com/QingyongHu/SensatUrban.
Robust 3D Object Detection using Probabilistic Point Clouds from Single-Photon LiDARs
LiDAR-based 3D sensors provide point clouds, a canonical 3D representation used in various scene understanding tasks. Modern LiDARs face key challenges in several real-world scenarios, such as long-distance or low-albedo objects, producing sparse or erroneous point clouds. These errors, which are rooted in the noisy raw LiDAR measurements, get propagated to downstream perception models, resulting in potentially severe loss of accuracy. This is because conventional 3D processing pipelines do not retain any uncertainty information from the raw measurements when constructing point clouds. We propose Probabilistic Point Clouds (PPC), a novel 3D scene representation where each point is augmented with a probability attribute that encapsulates the measurement uncertainty (or confidence) in the raw data. We further introduce inference approaches that leverage PPC for robust 3D object detection; these methods are versatile and can be used as computationally lightweight drop-in modules in 3D inference pipelines. We demonstrate, via both simulations and real captures, that PPC-based 3D inference methods outperform several baselines using LiDAR as well as camera-LiDAR fusion models, across challenging indoor and outdoor scenarios involving small, distant, and low-albedo objects, as well as strong ambient light. Our project webpage is at https://bhavyagoyal.github.io/ppc .
MixSup: Mixed-grained Supervision for Label-efficient LiDAR-based 3D Object Detection
Label-efficient LiDAR-based 3D object detection is currently dominated by weakly/semi-supervised methods. Instead of exclusively following one of them, we propose MixSup, a more practical paradigm simultaneously utilizing massive cheap coarse labels and a limited number of accurate labels for Mixed-grained Supervision. We start by observing that point clouds are usually textureless, making it hard to learn semantics. However, point clouds are geometrically rich and scale-invariant to the distances from sensors, making it relatively easy to learn the geometry of objects, such as poses and shapes. Thus, MixSup leverages massive coarse cluster-level labels to learn semantics and a few expensive box-level labels to learn accurate poses and shapes. We redesign the label assignment in mainstream detectors, which allows them seamlessly integrated into MixSup, enabling practicality and universality. We validate its effectiveness in nuScenes, Waymo Open Dataset, and KITTI, employing various detectors. MixSup achieves up to 97.31% of fully supervised performance, using cheap cluster annotations and only 10% box annotations. Furthermore, we propose PointSAM based on the Segment Anything Model for automated coarse labeling, further reducing the annotation burden. The code is available at https://github.com/BraveGroup/PointSAM-for-MixSup.
Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud
Recent advancements in self-supervised learning in the point cloud domain have demonstrated significant potential. However, these methods often suffer from drawbacks, including lengthy pre-training time, the necessity of reconstruction in the input space, or the necessity of additional modalities. In order to address these issues, we introduce Point-JEPA, a joint embedding predictive architecture designed specifically for point cloud data. To this end, we introduce a sequencer that orders point cloud patch embeddings to efficiently compute and utilize their proximity based on the indices during target and context selection. The sequencer also allows shared computations of the patch embeddings' proximity between context and target selection, further improving the efficiency. Experimentally, our method achieves competitive results with state-of-the-art methods while avoiding the reconstruction in the input space or additional modality.
Spherical Transformer for LiDAR-based 3D Recognition
LiDAR-based 3D point cloud recognition has benefited various applications. Without specially considering the LiDAR point distribution, most current methods suffer from information disconnection and limited receptive field, especially for the sparse distant points. In this work, we study the varying-sparsity distribution of LiDAR points and present SphereFormer to directly aggregate information from dense close points to the sparse distant ones. We design radial window self-attention that partitions the space into multiple non-overlapping narrow and long windows. It overcomes the disconnection issue and enlarges the receptive field smoothly and dramatically, which significantly boosts the performance of sparse distant points. Moreover, to fit the narrow and long windows, we propose exponential splitting to yield fine-grained position encoding and dynamic feature selection to increase model representation ability. Notably, our method ranks 1st on both nuScenes and SemanticKITTI semantic segmentation benchmarks with 81.9% and 74.8% mIoU, respectively. Also, we achieve the 3rd place on nuScenes object detection benchmark with 72.8% NDS and 68.5% mAP. Code is available at https://github.com/dvlab-research/SphereFormer.git.
SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection
Confusion and forgetting of object classes have been challenges of prime interest in Few-Shot Object Detection (FSOD). To overcome these pitfalls in metric learning based FSOD techniques, we introduce a novel Submodular Mutual Information Learning (SMILe) framework which adopts combinatorial mutual information functions to enforce the creation of tighter and discriminative feature clusters in FSOD. Our proposed approach generalizes to several existing approaches in FSOD, agnostic of the backbone architecture demonstrating elevated performance gains. A paradigm shift from instance based objective functions to combinatorial objectives in SMILe naturally preserves the diversity within an object class resulting in reduced forgetting when subjected to few training examples. Furthermore, the application of mutual information between the already learnt (base) and newly added (novel) objects ensures sufficient separation between base and novel classes, minimizing the effect of class confusion. Experiments on popular FSOD benchmarks, PASCAL-VOC and MS-COCO show that our approach generalizes to State-of-the-Art (SoTA) approaches improving their novel class performance by up to 5.7% (3.3 mAP points) and 5.4% (2.6 mAP points) on the 10-shot setting of VOC (split 3) and 30-shot setting of COCO datasets respectively. Our experiments also demonstrate better retention of base class performance and up to 2x faster convergence over existing approaches agnostic of the underlying architecture.
KeyMatchNet: Zero-Shot Pose Estimation in 3D Point Clouds by Generalized Keypoint Matching
In this paper, we present KeyMatchNet, a novel network for zero-shot pose estimation in 3D point clouds. Our method uses only depth information, making it more applicable for many industrial use cases, as color information is seldom available. The network is composed of two parallel components for computing object and scene features. The features are then combined to create matches used for pose estimation. The parallel structure allows for pre-processing of the individual parts, which decreases the run-time. Using a zero-shot network allows for a very short set-up time, as it is not necessary to train models for new objects. However, as the network is not trained for the specific object, zero-shot pose estimation methods generally have lower accuracy compared with conventional methods. To address this, we reduce the complexity of the task by including the scenario information during training. This is typically not feasible as collecting real data for new tasks drastically increases the cost. However, for zero-shot pose estimation, training for new objects is not necessary and the expensive data collection can thus be performed only once. Our method is trained on 1,500 objects and is only tested on unseen objects. We demonstrate that the trained network can not only accurately estimate poses for novel objects, but also demonstrate the ability of the network on objects outside of the trained class. Test results are also shown on real data. We believe that the presented method is valuable for many real-world scenarios. Project page available at keymatchnet.github.io
2D-3D Interlaced Transformer for Point Cloud Segmentation with Scene-Level Supervision
We present a Multimodal Interlaced Transformer (MIT) that jointly considers 2D and 3D data for weakly supervised point cloud segmentation. Research studies have shown that 2D and 3D features are complementary for point cloud segmentation. However, existing methods require extra 2D annotations to achieve 2D-3D information fusion. Considering the high annotation cost of point clouds, effective 2D and 3D feature fusion based on weakly supervised learning is in great demand. To this end, we propose a transformer model with two encoders and one decoder for weakly supervised point cloud segmentation using only scene-level class tags. Specifically, the two encoders compute the self-attended features for 3D point clouds and 2D multi-view images, respectively. The decoder implements interlaced 2D-3D cross-attention and carries out implicit 2D and 3D feature fusion. We alternately switch the roles of queries and key-value pairs in the decoder layers. It turns out that the 2D and 3D features are iteratively enriched by each other. Experiments show that it performs favorably against existing weakly supervised point cloud segmentation methods by a large margin on the S3DIS and ScanNet benchmarks. The project page will be available at https://jimmy15923.github.io/mit_web/.
PointPillars: Fast Encoders for Object Detection from Point Clouds
Object detection in point clouds is an important aspect of many robotics applications such as autonomous driving. In this paper we consider the problem of encoding a point cloud into a format appropriate for a downstream detection pipeline. Recent literature suggests two types of encoders; fixed encoders tend to be fast but sacrifice accuracy, while encoders that are learned from data are more accurate, but slower. In this work we propose PointPillars, a novel encoder which utilizes PointNets to learn a representation of point clouds organized in vertical columns (pillars). While the encoded features can be used with any standard 2D convolutional detection architecture, we further propose a lean downstream network. Extensive experimentation shows that PointPillars outperforms previous encoders with respect to both speed and accuracy by a large margin. Despite only using lidar, our full detection pipeline significantly outperforms the state of the art, even among fusion methods, with respect to both the 3D and bird's eye view KITTI benchmarks. This detection performance is achieved while running at 62 Hz: a 2 - 4 fold runtime improvement. A faster version of our method matches the state of the art at 105 Hz. These benchmarks suggest that PointPillars is an appropriate encoding for object detection in point clouds.
Label Name is Mantra: Unifying Point Cloud Segmentation across Heterogeneous Datasets
Point cloud segmentation is a fundamental task in 3D vision that serves a wide range of applications. Although great progresses have been made these years, its practical usability is still limited by the availability of training data. Existing approaches cannot make full use of multiple datasets on hand due to the label mismatch among different datasets. In this paper, we propose a principled approach that supports learning from heterogeneous datasets with different label sets. Our idea is to utilize a pre-trained language model to embed discrete labels to a continuous latent space with the help of their label names. This unifies all labels of different datasets, so that joint training is doable. Meanwhile, classifying points in the continuous 3D space by their vocabulary tokens significantly increase the generalization ability of the model in comparison with existing approaches that have fixed decoder architecture. Besides, we also integrate prompt learning in our framework to alleviate data shifts among different data sources. Extensive experiments demonstrate that our model outperforms the state-of-the-art by a large margin.
PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised RGB-D Point Cloud Registration
Point cloud registration is a task to estimate the rigid transformation between two unaligned scans, which plays an important role in many computer vision applications. Previous learning-based works commonly focus on supervised registration, which have limitations in practice. Recently, with the advance of inexpensive RGB-D sensors, several learning-based works utilize RGB-D data to achieve unsupervised registration. However, most of existing unsupervised methods follow a cascaded design or fuse RGB-D data in a unidirectional manner, which do not fully exploit the complementary information in the RGB-D data. To leverage the complementary information more effectively, we propose a network implementing multi-scale bidirectional fusion between RGB images and point clouds generated from depth images. By bidirectionally fusing visual and geometric features in multi-scales, more distinctive deep features for correspondence estimation can be obtained, making our registration more accurate. Extensive experiments on ScanNet and 3DMatch demonstrate that our method achieves new state-of-the-art performance. Code will be released at https://github.com/phdymz/PointMBF
Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration
Deep point cloud registration methods face challenges to partial overlaps and rely on labeled data. To address these issues, we propose UDPReg, an unsupervised deep probabilistic registration framework for point clouds with partial overlaps. Specifically, we first adopt a network to learn posterior probability distributions of Gaussian mixture models (GMMs) from point clouds. To handle partial point cloud registration, we apply the Sinkhorn algorithm to predict the distribution-level correspondences under the constraint of the mixing weights of GMMs. To enable unsupervised learning, we design three distribution consistency-based losses: self-consistency, cross-consistency, and local contrastive. The self-consistency loss is formulated by encouraging GMMs in Euclidean and feature spaces to share identical posterior distributions. The cross-consistency loss derives from the fact that the points of two partially overlapping point clouds belonging to the same clusters share the cluster centroids. The cross-consistency loss allows the network to flexibly learn a transformation-invariant posterior distribution of two aligned point clouds. The local contrastive loss facilitates the network to extract discriminative local features. Our UDPReg achieves competitive performance on the 3DMatch/3DLoMatch and ModelNet/ModelLoNet benchmarks.
M^3CS: Multi-Target Masked Point Modeling with Learnable Codebook and Siamese Decoders
Masked point modeling has become a promising scheme of self-supervised pre-training for point clouds. Existing methods reconstruct either the original points or related features as the objective of pre-training. However, considering the diversity of downstream tasks, it is necessary for the model to have both low- and high-level representation modeling capabilities to capture geometric details and semantic contexts during pre-training. To this end, M^3CS is proposed to enable the model with the above abilities. Specifically, with masked point cloud as input, M^3CS introduces two decoders to predict masked representations and the original points simultaneously. While an extra decoder doubles parameters for the decoding process and may lead to overfitting, we propose siamese decoders to keep the amount of learnable parameters unchanged. Further, we propose an online codebook projecting continuous tokens into discrete ones before reconstructing masked points. In such way, we can enforce the decoder to take effect through the combinations of tokens rather than remembering each token. Comprehensive experiments show that M^3CS achieves superior performance at both classification and segmentation tasks, outperforming existing methods.
P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds
Towards 3D object tracking in point clouds, a novel point-to-box network termed P2B is proposed in an end-to-end learning manner. Our main idea is to first localize potential target centers in 3D search area embedded with target information. Then point-driven 3D target proposal and verification are executed jointly. In this way, the time-consuming 3D exhaustive search can be avoided. Specifically, we first sample seeds from the point clouds in template and search area respectively. Then, we execute permutation-invariant feature augmentation to embed target clues from template into search area seeds and represent them with target-specific features. Consequently, the augmented search area seeds regress the potential target centers via Hough voting. The centers are further strengthened with seed-wise targetness scores. Finally, each center clusters its neighbors to leverage the ensemble power for joint 3D target proposal and verification. We apply PointNet++ as our backbone and experiments on KITTI tracking dataset demonstrate P2B's superiority (~10%'s improvement over state-of-the-art). Note that P2B can run with 40FPS on a single NVIDIA 1080Ti GPU. Our code and model are available at https://github.com/HaozheQi/P2B.
LidarCLIP or: How I Learned to Talk to Point Clouds
Research connecting text and images has recently seen several breakthroughs, with models like CLIP, DALL-E 2, and Stable Diffusion. However, the connection between text and other visual modalities, such as lidar data, has received less attention, prohibited by the lack of text-lidar datasets. In this work, we propose LidarCLIP, a mapping from automotive point clouds to a pre-existing CLIP embedding space. Using image-lidar pairs, we supervise a point cloud encoder with the image CLIP embeddings, effectively relating text and lidar data with the image domain as an intermediary. We show the effectiveness of LidarCLIP by demonstrating that lidar-based retrieval is generally on par with image-based retrieval, but with complementary strengths and weaknesses. By combining image and lidar features, we improve upon both single-modality methods and enable a targeted search for challenging detection scenarios under adverse sensor conditions. We also explore zero-shot classification and show that LidarCLIP outperforms existing attempts to use CLIP for point clouds by a large margin. Finally, we leverage our compatibility with CLIP to explore a range of applications, such as point cloud captioning and lidar-to-image generation, without any additional training. Code and pre-trained models are available at https://github.com/atonderski/lidarclip.
SampleNet: Differentiable Point Cloud Sampling
There is a growing number of tasks that work directly on point clouds. As the size of the point cloud grows, so do the computational demands of these tasks. A possible solution is to sample the point cloud first. Classic sampling approaches, such as farthest point sampling (FPS), do not consider the downstream task. A recent work showed that learning a task-specific sampling can improve results significantly. However, the proposed technique did not deal with the non-differentiability of the sampling operation and offered a workaround instead. We introduce a novel differentiable relaxation for point cloud sampling that approximates sampled points as a mixture of points in the primary input cloud. Our approximation scheme leads to consistently good results on classification and geometry reconstruction applications. We also show that the proposed sampling method can be used as a front to a point cloud registration network. This is a challenging task since sampling must be consistent across two different point clouds for a shared downstream task. In all cases, our approach outperforms existing non-learned and learned sampling alternatives. Our code is publicly available at https://github.com/itailang/SampleNet.
Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework
Point cloud analysis is challenging due to irregularity and unordered data structure. To capture the 3D geometries, prior works mainly rely on exploring sophisticated local geometric extractors using convolution, graph, or attention mechanisms. These methods, however, incur unfavorable latency during inference, and the performance saturates over the past few years. In this paper, we present a novel perspective on this task. We notice that detailed local geometrical information probably is not the key to point cloud analysis -- we introduce a pure residual MLP network, called PointMLP, which integrates no sophisticated local geometrical extractors but still performs very competitively. Equipped with a proposed lightweight geometric affine module, PointMLP delivers the new state-of-the-art on multiple datasets. On the real-world ScanObjectNN dataset, our method even surpasses the prior best method by 3.3% accuracy. We emphasize that PointMLP achieves this strong performance without any sophisticated operations, hence leading to a superior inference speed. Compared to most recent CurveNet, PointMLP trains 2x faster, tests 7x faster, and is more accurate on ModelNet40 benchmark. We hope our PointMLP may help the community towards a better understanding of point cloud analysis. The code is available at https://github.com/ma-xu/pointMLP-pytorch.
Point-MoE: Towards Cross-Domain Generalization in 3D Semantic Segmentation via Mixture-of-Experts
While scaling laws have transformed natural language processing and computer vision, 3D point cloud understanding has yet to reach that stage. This can be attributed to both the comparatively smaller scale of 3D datasets, as well as the disparate sources of the data itself. Point clouds are captured by diverse sensors (e.g., depth cameras, LiDAR) across varied domains (e.g., indoor, outdoor), each introducing unique scanning patterns, sampling densities, and semantic biases. Such domain heterogeneity poses a major barrier towards training unified models at scale, especially under the realistic constraint that domain labels are typically inaccessible at inference time. In this work, we propose Point-MoE, a Mixture-of-Experts architecture designed to enable large-scale, cross-domain generalization in 3D perception. We show that standard point cloud backbones degrade significantly in performance when trained on mixed-domain data, whereas Point-MoE with a simple top-k routing strategy can automatically specialize experts, even without access to domain labels. Our experiments demonstrate that Point-MoE not only outperforms strong multi-domain baselines but also generalizes better to unseen domains. This work highlights a scalable path forward for 3D understanding: letting the model discover structure in diverse 3D data, rather than imposing it via manual curation or domain supervision.
PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection
Recent temporal LiDAR-based 3D object detectors achieve promising performance based on the two-stage proposal-based approach. They generate 3D box candidates from the first-stage dense detector, followed by different temporal aggregation methods. However, these approaches require per-frame objects or whole point clouds, posing challenges related to memory bank utilization. Moreover, point clouds and trajectory features are combined solely based on concatenation, which may neglect effective interactions between them. In this paper, we propose a point-trajectory transformer with long short-term memory for efficient temporal 3D object detection. To this end, we only utilize point clouds of current-frame objects and their historical trajectories as input to minimize the memory bank storage requirement. Furthermore, we introduce modules to encode trajectory features, focusing on long short-term and future-aware perspectives, and then effectively aggregate them with point cloud features. We conduct extensive experiments on the large-scale Waymo dataset to demonstrate that our approach performs well against state-of-the-art methods. Code and models will be made publicly available at https://github.com/kuanchihhuang/PTT.
DELFlow: Dense Efficient Learning of Scene Flow for Large-Scale Point Clouds
Point clouds are naturally sparse, while image pixels are dense. The inconsistency limits feature fusion from both modalities for point-wise scene flow estimation. Previous methods rarely predict scene flow from the entire point clouds of the scene with one-time inference due to the memory inefficiency and heavy overhead from distance calculation and sorting involved in commonly used farthest point sampling, KNN, and ball query algorithms for local feature aggregation. To mitigate these issues in scene flow learning, we regularize raw points to a dense format by storing 3D coordinates in 2D grids. Unlike the sampling operation commonly used in existing works, the dense 2D representation 1) preserves most points in the given scene, 2) brings in a significant boost of efficiency, and 3) eliminates the density gap between points and pixels, allowing us to perform effective feature fusion. We also present a novel warping projection technique to alleviate the information loss problem resulting from the fact that multiple points could be mapped into one grid during projection when computing cost volume. Sufficient experiments demonstrate the efficiency and effectiveness of our method, outperforming the prior-arts on the FlyingThings3D and KITTI dataset.
Center-based 3D Object Detection and Tracking
Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model method by a large margin and ranks first among all Lidar-only submissions. The code and pretrained models are available at https://github.com/tianweiy/CenterPoint.
Fully-Geometric Cross-Attention for Point Cloud Registration
Point cloud registration approaches often fail when the overlap between point clouds is low due to noisy point correspondences. This work introduces a novel cross-attention mechanism tailored for Transformer-based architectures that tackles this problem, by fusing information from coordinates and features at the super-point level between point clouds. This formulation has remained unexplored primarily because it must guarantee rotation and translation invariance since point clouds reside in different and independent reference frames. We integrate the Gromov-Wasserstein distance into the cross-attention formulation to jointly compute distances between points across different point clouds and account for their geometric structure. By doing so, points from two distinct point clouds can attend to each other under arbitrary rigid transformations. At the point level, we also devise a self-attention mechanism that aggregates the local geometric structure information into point features for fine matching. Our formulation boosts the number of inlier correspondences, thereby yielding more precise registration results compared to state-of-the-art approaches. We have conducted an extensive evaluation on 3DMatch, 3DLoMatch, KITTI, and 3DCSR datasets.
Few-Shot Pattern Detection via Template Matching and Regression
We address the problem of few-shot pattern detection, which aims to detect all instances of a given pattern, typically represented by a few exemplars, from an input image. Although similar problems have been studied in few-shot object counting and detection (FSCD), previous methods and their benchmarks have narrowed patterns of interest to object categories and often fail to localize non-object patterns. In this work, we propose a simple yet effective detector based on template matching and regression, dubbed TMR. While previous FSCD methods typically represent target exemplars as spatially collapsed prototypes and lose structural information, we revisit classic template matching and regression. It effectively preserves and leverages the spatial layout of exemplars through a minimalistic structure with a small number of learnable convolutional or projection layers on top of a frozen backbone We also introduce a new dataset, dubbed RPINE, which covers a wider range of patterns than existing object-centric datasets. Our method outperforms the state-of-the-art methods on the three benchmarks, RPINE, FSCD-147, and FSCD-LVIS, and demonstrates strong generalization in cross-dataset evaluation.
SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds
Labelling point clouds fully is highly time-consuming and costly. As larger point cloud datasets with billions of points become more common, we ask whether the full annotation is even necessary, demonstrating that existing baselines designed under a fully annotated assumption only degrade slightly even when faced with 1% random point annotations. However, beyond this point, e.g., at 0.1% annotations, segmentation accuracy is unacceptably low. We observe that, as point clouds are samples of the 3D world, the distribution of points in a local neighborhood is relatively homogeneous, exhibiting strong semantic similarity. Motivated by this, we propose a new weak supervision method to implicitly augment highly sparse supervision signals. Extensive experiments demonstrate the proposed Semantic Query Network (SQN) achieves promising performance on seven large-scale open datasets under weak supervision schemes, while requiring only 0.1% randomly annotated points for training, greatly reducing annotation cost and effort. The code is available at https://github.com/QingyongHu/SQN.
Trokens: Semantic-Aware Relational Trajectory Tokens for Few-Shot Action Recognition
Video understanding requires effective modeling of both motion and appearance information, particularly for few-shot action recognition. While recent advances in point tracking have been shown to improve few-shot action recognition, two fundamental challenges persist: selecting informative points to track and effectively modeling their motion patterns. We present Trokens, a novel approach that transforms trajectory points into semantic-aware relational tokens for action recognition. First, we introduce a semantic-aware sampling strategy to adaptively distribute tracking points based on object scale and semantic relevance. Second, we develop a motion modeling framework that captures both intra-trajectory dynamics through the Histogram of Oriented Displacements (HoD) and inter-trajectory relationships to model complex action patterns. Our approach effectively combines these trajectory tokens with semantic features to enhance appearance features with motion information, achieving state-of-the-art performance across six diverse few-shot action recognition benchmarks: Something-Something-V2 (both full and small splits), Kinetics, UCF101, HMDB51, and FineGym. For project page see https://trokens-iccv25.github.io
P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with Point-to-Pixel Prompting
Nowadays, pre-training big models on large-scale datasets has become a crucial topic in deep learning. The pre-trained models with high representation ability and transferability achieve a great success and dominate many downstream tasks in natural language processing and 2D vision. However, it is non-trivial to promote such a pretraining-tuning paradigm to the 3D vision, given the limited training data that are relatively inconvenient to collect. In this paper, we provide a new perspective of leveraging pre-trained 2D knowledge in 3D domain to tackle this problem, tuning pre-trained image models with the novel Point-to-Pixel prompting for point cloud analysis at a minor parameter cost. Following the principle of prompting engineering, we transform point clouds into colorful images with geometry-preserved projection and geometry-aware coloring to adapt to pre-trained image models, whose weights are kept frozen during the end-to-end optimization of point cloud analysis tasks. We conduct extensive experiments to demonstrate that cooperating with our proposed Point-to-Pixel Prompting, better pre-trained image model will lead to consistently better performance in 3D vision. Enjoying prosperous development from image pre-training field, our method attains 89.3% accuracy on the hardest setting of ScanObjectNN, surpassing conventional point cloud models with much fewer trainable parameters. Our framework also exhibits very competitive performance on ModelNet classification and ShapeNet Part Segmentation. Code is available at https://github.com/wangzy22/P2P.
P2C: Self-Supervised Point Cloud Completion from Single Partial Clouds
Point cloud completion aims to recover the complete shape based on a partial observation. Existing methods require either complete point clouds or multiple partial observations of the same object for learning. In contrast to previous approaches, we present Partial2Complete (P2C), the first self-supervised framework that completes point cloud objects using training samples consisting of only a single incomplete point cloud per object. Specifically, our framework groups incomplete point clouds into local patches as input and predicts masked patches by learning prior information from different partial objects. We also propose Region-Aware Chamfer Distance to regularize shape mismatch without limiting completion capability, and devise the Normal Consistency Constraint to incorporate a local planarity assumption, encouraging the recovered shape surface to be continuous and complete. In this way, P2C no longer needs multiple observations or complete point clouds as ground truth. Instead, structural cues are learned from a category-specific dataset to complete partial point clouds of objects. We demonstrate the effectiveness of our approach on both synthetic ShapeNet data and real-world ScanNet data, showing that P2C produces comparable results to methods trained with complete shapes, and outperforms methods learned with multiple partial observations. Code is available at https://github.com/CuiRuikai/Partial2Complete.
Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning
This paper advocates the use of implicit surface representation in autoencoder-based self-supervised 3D representation learning. The most popular and accessible 3D representation, i.e., point clouds, involves discrete samples of the underlying continuous 3D surface. This discretization process introduces sampling variations on the 3D shape, making it challenging to develop transferable knowledge of the true 3D geometry. In the standard autoencoding paradigm, the encoder is compelled to encode not only the 3D geometry but also information on the specific discrete sampling of the 3D shape into the latent code. This is because the point cloud reconstructed by the decoder is considered unacceptable unless there is a perfect mapping between the original and the reconstructed point clouds. This paper introduces the Implicit AutoEncoder (IAE), a simple yet effective method that addresses the sampling variation issue by replacing the commonly-used point-cloud decoder with an implicit decoder. The implicit decoder reconstructs a continuous representation of the 3D shape, independent of the imperfections in the discrete samples. Extensive experiments demonstrate that the proposed IAE achieves state-of-the-art performance across various self-supervised learning benchmarks.
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition
Unlike its image based counterpart, point cloud based retrieval for place recognition has remained as an unexplored and unsolved problem. This is largely due to the difficulty in extracting local feature descriptors from a point cloud that can subsequently be encoded into a global descriptor for the retrieval task. In this paper, we propose the PointNetVLAD where we leverage on the recent success of deep networks to solve point cloud based retrieval for place recognition. Specifically, our PointNetVLAD is a combination/modification of the existing PointNet and NetVLAD, which allows end-to-end training and inference to extract the global descriptor from a given 3D point cloud. Furthermore, we propose the "lazy triplet and quadruplet" loss functions that can achieve more discriminative and generalizable global descriptors to tackle the retrieval task. We create benchmark datasets for point cloud based retrieval for place recognition, and the experimental results on these datasets show the feasibility of our PointNetVLAD. Our code and the link for the benchmark dataset downloads are available in our project website. http://github.com/mikacuy/pointnetvlad/
G3Reg: Pyramid Graph-based Global Registration using Gaussian Ellipsoid Model
This study introduces a novel framework, G3Reg, for fast and robust global registration of LiDAR point clouds. In contrast to conventional complex keypoints and descriptors, we extract fundamental geometric primitives, including planes, clusters, and lines (PCL) from the raw point cloud to obtain low-level semantic segments. Each segment is represented as a unified Gaussian Ellipsoid Model (GEM), using a probability ellipsoid to ensure the ground truth centers are encompassed with a certain degree of probability. Utilizing these GEMs, we present a distrust-and-verify scheme based on a Pyramid Compatibility Graph for Global Registration (PAGOR). Specifically, we establish an upper bound, which can be traversed based on the confidence level for compatibility testing to construct the pyramid graph. Then, we solve multiple maximum cliques (MAC) for each level of the pyramid graph, thus generating the corresponding transformation candidates. In the verification phase, we adopt a precise and efficient metric for point cloud alignment quality, founded on geometric primitives, to identify the optimal candidate. The algorithm's performance is validated on three publicly available datasets and a self-collected multi-session dataset. Parameter settings remained unchanged during the experiment evaluations. The results exhibit superior robustness and real-time performance of the G3Reg framework compared to state-of-the-art methods. Furthermore, we demonstrate the potential for integrating individual GEM and PAGOR components into other registration frameworks to enhance their efficacy. Code: https://github.com/HKUST-Aerial-Robotics/G3Reg
4D Unsupervised Object Discovery
Object discovery is a core task in computer vision. While fast progresses have been made in supervised object detection, its unsupervised counterpart remains largely unexplored. With the growth of data volume, the expensive cost of annotations is the major limitation hindering further study. Therefore, discovering objects without annotations has great significance. However, this task seems impractical on still-image or point cloud alone due to the lack of discriminative information. Previous studies underlook the crucial temporal information and constraints naturally behind multi-modal inputs. In this paper, we propose 4D unsupervised object discovery, jointly discovering objects from 4D data -- 3D point clouds and 2D RGB images with temporal information. We present the first practical approach for this task by proposing a ClusterNet on 3D point clouds, which is jointly iteratively optimized with a 2D localization network. Extensive experiments on the large-scale Waymo Open Dataset suggest that the localization network and ClusterNet achieve competitive performance on both class-agnostic 2D object detection and 3D instance segmentation, bridging the gap between unsupervised methods and full supervised ones. Codes and models will be made available at https://github.com/Robertwyq/LSMOL.
PARE-Net: Position-Aware Rotation-Equivariant Networks for Robust Point Cloud Registration
Learning rotation-invariant distinctive features is a fundamental requirement for point cloud registration. Existing methods often use rotation-sensitive networks to extract features, while employing rotation augmentation to learn an approximate invariant mapping rudely. This makes networks fragile to rotations, overweight, and hinders the distinctiveness of features. To tackle these problems, we propose a novel position-aware rotation-equivariant network, for efficient, light-weighted, and robust registration. The network can provide a strong model inductive bias to learn rotation-equivariant/invariant features, thus addressing the aforementioned limitations. To further improve the distinctiveness of descriptors, we propose a position-aware convolution, which can better learn spatial information of local structures. Moreover, we also propose a feature-based hypothesis proposer. It leverages rotation-equivariant features that encode fine-grained structure orientations to generate reliable model hypotheses. Each correspondence can generate a hypothesis, thus it is more efficient than classic estimators that require multiple reliable correspondences. Accordingly, a contrastive rotation loss is presented to enhance the robustness of rotation-equivariant features against data degradation. Extensive experiments on indoor and outdoor datasets demonstrate that our method significantly outperforms the SOTA methods in terms of registration recall while being lightweight and keeping a fast speed. Moreover, experiments on rotated datasets demonstrate its robustness against rotation variations. Code is available at https://github.com/yaorz97/PARENet.
Sparse Point Cloud Patches Rendering via Splitting 2D Gaussians
Current learning-based methods predict NeRF or 3D Gaussians from point clouds to achieve photo-realistic rendering but still depend on categorical priors, dense point clouds, or additional refinements. Hence, we introduce a novel point cloud rendering method by predicting 2D Gaussians from point clouds. Our method incorporates two identical modules with an entire-patch architecture enabling the network to be generalized to multiple datasets. The module normalizes and initializes the Gaussians utilizing the point cloud information including normals, colors and distances. Then, splitting decoders are employed to refine the initial Gaussians by duplicating them and predicting more accurate results, making our methodology effectively accommodate sparse point clouds as well. Once trained, our approach exhibits direct generalization to point clouds across different categories. The predicted Gaussians are employed directly for rendering without additional refinement on the rendered images, retaining the benefits of 2D Gaussians. We conduct extensive experiments on various datasets, and the results demonstrate the superiority and generalization of our method, which achieves SOTA performance. The code is available at https://github.com/murcherful/GauPCRender}{https://github.com/murcherful/GauPCRender.
Yes, we CANN: Constrained Approximate Nearest Neighbors for local feature-based visual localization
Large-scale visual localization systems continue to rely on 3D point clouds built from image collections using structure-from-motion. While the 3D points in these models are represented using local image features, directly matching a query image's local features against the point cloud is challenging due to the scale of the nearest-neighbor search problem. Many recent approaches to visual localization have thus proposed a hybrid method, where first a global (per image) embedding is used to retrieve a small subset of database images, and local features of the query are matched only against those. It seems to have become common belief that global embeddings are critical for said image-retrieval in visual localization, despite the significant downside of having to compute two feature types for each query image. In this paper, we take a step back from this assumption and propose Constrained Approximate Nearest Neighbors (CANN), a joint solution of k-nearest-neighbors across both the geometry and appearance space using only local features. We first derive the theoretical foundation for k-nearest-neighbor retrieval across multiple metrics and then showcase how CANN improves visual localization. Our experiments on public localization benchmarks demonstrate that our method significantly outperforms both state-of-the-art global feature-based retrieval and approaches using local feature aggregation schemes. Moreover, it is an order of magnitude faster in both index and query time than feature aggregation schemes for these datasets. Code will be released.
SAMIC: Segment Anything with In-Context Spatial Prompt Engineering
Few-shot segmentation is the problem of learning to identify specific types of objects (e.g., airplanes) in images from a small set of labeled reference images. The current state of the art is driven by resource-intensive construction of models for every new domain-specific application. Such models must be trained on enormous labeled datasets of unrelated objects (e.g., cars, trains, animals) so that their ``knowledge'' can be transferred to new types of objects. In this paper, we show how to leverage existing vision foundation models (VFMs) to reduce the incremental cost of creating few-shot segmentation models for new domains. Specifically, we introduce SAMIC, a small network that learns how to prompt VFMs in order to segment new types of objects in domain-specific applications. SAMIC enables any task to be approached as a few-shot learning problem. At 2.6 million parameters, it is 94% smaller than the leading models (e.g., having ResNet 101 backbone with 45+ million parameters). Even using 1/5th of the training data provided by one-shot benchmarks, SAMIC is competitive with, or sets the state of the art, on a variety of few-shot and semantic segmentation datasets including COCO-20^i, Pascal-5^i, PerSeg, FSS-1000, and NWPU VHR-10.
Robust Multiview Point Cloud Registration with Reliable Pose Graph Initialization and History Reweighting
In this paper, we present a new method for the multiview registration of point cloud. Previous multiview registration methods rely on exhaustive pairwise registration to construct a densely-connected pose graph and apply Iteratively Reweighted Least Square (IRLS) on the pose graph to compute the scan poses. However, constructing a densely-connected graph is time-consuming and contains lots of outlier edges, which makes the subsequent IRLS struggle to find correct poses. To address the above problems, we first propose to use a neural network to estimate the overlap between scan pairs, which enables us to construct a sparse but reliable pose graph. Then, we design a novel history reweighting function in the IRLS scheme, which has strong robustness to outlier edges on the graph. In comparison with existing multiview registration methods, our method achieves 11% higher registration recall on the 3DMatch dataset and ~13% lower registration errors on the ScanNet dataset while reducing ~70% required pairwise registrations. Comprehensive ablation studies are conducted to demonstrate the effectiveness of our designs.
CLIP2Point: Transfer CLIP to Point Cloud Classification with Image-Depth Pre-training
Pre-training across 3D vision and language remains under development because of limited training data. Recent works attempt to transfer vision-language pre-training models to 3D vision. PointCLIP converts point cloud data to multi-view depth maps, adopting CLIP for shape classification. However, its performance is restricted by the domain gap between rendered depth maps and images, as well as the diversity of depth distributions. To address this issue, we propose CLIP2Point, an image-depth pre-training method by contrastive learning to transfer CLIP to the 3D domain, and adapt it to point cloud classification. We introduce a new depth rendering setting that forms a better visual effect, and then render 52,460 pairs of images and depth maps from ShapeNet for pre-training. The pre-training scheme of CLIP2Point combines cross-modality learning to enforce the depth features for capturing expressive visual and textual features and intra-modality learning to enhance the invariance of depth aggregation. Additionally, we propose a novel Dual-Path Adapter (DPA) module, i.e., a dual-path structure with simplified adapters for few-shot learning. The dual-path structure allows the joint use of CLIP and CLIP2Point, and the simplified adapter can well fit few-shot tasks without post-search. Experimental results show that CLIP2Point is effective in transferring CLIP knowledge to 3D vision. Our CLIP2Point outperforms PointCLIP and other self-supervised 3D networks, achieving state-of-the-art results on zero-shot and few-shot classification.
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
Point Contrastive Prediction with Semantic Clustering for Self-Supervised Learning on Point Cloud Videos
We propose a unified point cloud video self-supervised learning framework for object-centric and scene-centric data. Previous methods commonly conduct representation learning at the clip or frame level and cannot well capture fine-grained semantics. Instead of contrasting the representations of clips or frames, in this paper, we propose a unified self-supervised framework by conducting contrastive learning at the point level. Moreover, we introduce a new pretext task by achieving semantic alignment of superpoints, which further facilitates the representations to capture semantic cues at multiple scales. In addition, due to the high redundancy in the temporal dimension of dynamic point clouds, directly conducting contrastive learning at the point level usually leads to massive undesired negatives and insufficient modeling of positive representations. To remedy this, we propose a selection strategy to retain proper negatives and make use of high-similarity samples from other instances as positive supplements. Extensive experiments show that our method outperforms supervised counterparts on a wide range of downstream tasks and demonstrates the superior transferability of the learned representations.
Exploiting Local Features and Range Images for Small Data Real-Time Point Cloud Semantic Segmentation
Semantic segmentation of point clouds is an essential task for understanding the environment in autonomous driving and robotics. Recent range-based works achieve real-time efficiency, while point- and voxel-based methods produce better results but are affected by high computational complexity. Moreover, highly complex deep learning models are often not suited to efficiently learn from small datasets. Their generalization capabilities can easily be driven by the abundance of data rather than the architecture design. In this paper, we harness the information from the three-dimensional representation to proficiently capture local features, while introducing the range image representation to incorporate additional information and facilitate fast computation. A GPU-based KDTree allows for rapid building, querying, and enhancing projection with straightforward operations. Extensive experiments on SemanticKITTI and nuScenes datasets demonstrate the benefits of our modification in a ``small data'' setup, in which only one sequence of the dataset is used to train the models, but also in the conventional setup, where all sequences except one are used for training. We show that a reduced version of our model not only demonstrates strong competitiveness against full-scale state-of-the-art models but also operates in real-time, making it a viable choice for real-world case applications. The code of our method is available at https://github.com/Bender97/WaffleAndRange.
Multi-Level Correlation Network For Few-Shot Image Classification
Few-shot image classification(FSIC) aims to recognize novel classes given few labeled images from base classes. Recent works have achieved promising classification performance, especially for metric-learning methods, where a measure at only image feature level is usually used. In this paper, we argue that measure at such a level may not be effective enough to generalize from base to novel classes when using only a few images. Instead, a multi-level descriptor of an image is taken for consideration in this paper. We propose a multi-level correlation network (MLCN) for FSIC to tackle this problem by effectively capturing local information. Concretely, we present the self-correlation module and cross-correlation module to learn the semantic correspondence relation of local information based on learned representations. Moreover, we propose a pattern-correlation module to capture the pattern of fine-grained images and find relevant structural patterns between base classes and novel classes. Extensive experiments and analysis show the effectiveness of our proposed method on four widely-used FSIC benchmarks. The code for our approach is available at: https://github.com/Yunkai696/MLCN.
KISS-Matcher: Fast and Robust Point Cloud Registration Revisited
While global point cloud registration systems have advanced significantly in all aspects, many studies have focused on specific components, such as feature extraction, graph-theoretic pruning, or pose solvers. In this paper, we take a holistic view on the registration problem and develop an open-source and versatile C++ library for point cloud registration, called KISS-Matcher. KISS-Matcher combines a novel feature detector, Faster-PFH, that improves over the classical fast point feature histogram (FPFH). Moreover, it adopts a k-core-based graph-theoretic pruning to reduce the time complexity of rejecting outlier correspondences. Finally, it combines these modules in a complete, user-friendly, and ready-to-use pipeline. As verified by extensive experiments, KISS-Matcher has superior scalability and broad applicability, achieving a substantial speed-up compared to state-of-the-art outlier-robust registration pipelines while preserving accuracy. Our code will be available at https://github.com/MIT-SPARK/KISS-Matcher.
LMNet: Real-time Multiclass Object Detection on CPU using 3D LiDAR
This paper describes an optimized single-stage deep convolutional neural network to detect objects in urban environments, using nothing more than point cloud data. This feature enables our method to work regardless the time of the day and the lighting conditions.The proposed network structure employs dilated convolutions to gradually increase the perceptive field as depth increases, this helps to reduce the computation time by about 30%. The network input consists of five perspective representations of the unorganized point cloud data. The network outputs an objectness map and the bounding box offset values for each point. Our experiments showed that using reflection, range, and the position on each of the three axes helped to improve the location and orientation of the output bounding box. We carried out quantitative evaluations with the help of the KITTI dataset evaluation server. It achieved the fastest processing speed among the other contenders, making it suitable for real-time applications. We implemented and tested it on a real vehicle with a Velodyne HDL-64 mounted on top of it. We achieved execution times as fast as 50 FPS using desktop GPUs, and up to 10 FPS on a single Intel Core i5 CPU. The deploy implementation is open-sourced and it can be found as a feature branch inside the autonomous driving framework Autoware. Code is available at: https://github.com/CPFL/Autoware/tree/feature/cnn_lidar_detection
Point-GCC: Universal Self-supervised 3D Scene Pre-training via Geometry-Color Contrast
Geometry and color information provided by the point clouds are both crucial for 3D scene understanding. Two pieces of information characterize the different aspects of point clouds, but existing methods lack an elaborate design for the discrimination and relevance. Hence we explore a 3D self-supervised paradigm that can better utilize the relations of point cloud information. Specifically, we propose a universal 3D scene pre-training framework via Geometry-Color Contrast (Point-GCC), which aligns geometry and color information using a Siamese network. To take care of actual application tasks, we design (i) hierarchical supervision with point-level contrast and reconstruct and object-level contrast based on the novel deep clustering module to close the gap between pre-training and downstream tasks; (ii) architecture-agnostic backbone to adapt for various downstream models. Benefiting from the object-level representation associated with downstream tasks, Point-GCC can directly evaluate model performance and the result demonstrates the effectiveness of our methods. Transfer learning results on a wide range of tasks also show consistent improvements across all datasets. e.g., new state-of-the-art object detection results on SUN RGB-D and S3DIS datasets. Codes will be released at https://github.com/Asterisci/Point-GCC.
SAS: Segment Any 3D Scene with Integrated 2D Priors
The open vocabulary capability of 3D models is increasingly valued, as traditional methods with models trained with fixed categories fail to recognize unseen objects in complex dynamic 3D scenes. In this paper, we propose a simple yet effective approach, SAS, to integrate the open vocabulary capability of multiple 2D models and migrate it to 3D domain. Specifically, we first propose Model Alignment via Text to map different 2D models into the same embedding space using text as a bridge. Then, we propose Annotation-Free Model Capability Construction to explicitly quantify the 2D model's capability of recognizing different categories using diffusion models. Following this, point cloud features from different 2D models are fused with the guide of constructed model capabilities. Finally, the integrated 2D open vocabulary capability is transferred to 3D domain through feature distillation. SAS outperforms previous methods by a large margin across multiple datasets, including ScanNet v2, Matterport3D, and nuScenes, while its generalizability is further validated on downstream tasks, e.g., gaussian segmentation and instance segmentation.
Point Cloud Mamba: Point Cloud Learning via State Space Model
Recently, state space models have exhibited strong global modeling capabilities and linear computational complexity in contrast to transformers. This research focuses on applying such architecture to more efficiently and effectively model point cloud data globally with linear computational complexity. In particular, for the first time, we demonstrate that Mamba-based point cloud methods can outperform previous methods based on transformer or multi-layer perceptrons (MLPs). To enable Mamba to process 3-D point cloud data more effectively, we propose a novel Consistent Traverse Serialization method to convert point clouds into 1-D point sequences while ensuring that neighboring points in the sequence are also spatially adjacent. Consistent Traverse Serialization yields six variants by permuting the order of x, y, and z coordinates, and the synergistic use of these variants aids Mamba in comprehensively observing point cloud data. Furthermore, to assist Mamba in handling point sequences with different orders more effectively, we introduce point prompts to inform Mamba of the sequence's arrangement rules. Finally, we propose positional encoding based on spatial coordinate mapping to inject positional information into point cloud sequences more effectively. Point Cloud Mamba surpasses the state-of-the-art (SOTA) point-based method PointNeXt and achieves new SOTA performance on the ScanObjectNN, ModelNet40, ShapeNetPart, and S3DIS datasets. It is worth mentioning that when using a more powerful local feature extraction module, our PCM achieves 79.6 mIoU on S3DIS, significantly surpassing the previous SOTA models, DeLA and PTv3, by 5.5 mIoU and 4.9 mIoU, respectively.
Multiview Point Cloud Registration via Optimization in an Autoencoder Latent Space
Point cloud rigid registration is a fundamental problem in 3D computer vision. In the multiview case, we aim to find a set of 6D poses to align a set of objects. Methods based on pairwise registration rely on a subsequent synchronization algorithm, which makes them poorly scalable with the number of views. Generative approaches overcome this limitation, but are based on Gaussian Mixture Models and use an Expectation-Maximization algorithm. Hence, they are not well suited to handle large transformations. Moreover, most existing methods cannot handle high levels of degradations. In this paper, we introduce POLAR (POint cloud LAtent Registration), a multiview registration method able to efficiently deal with a large number of views, while being robust to a high level of degradations and large initial angles. To achieve this, we transpose the registration problem into the latent space of a pretrained autoencoder, design a loss taking degradations into account, and develop an efficient multistart optimization strategy. Our proposed method significantly outperforms state-of-the-art approaches on synthetic and real data. POLAR is available at github.com/pypolar/polar or as a standalone package which can be installed with pip install polaregistration.
FreeZe: Training-free zero-shot 6D pose estimation with geometric and vision foundation models
Estimating the 6D pose of objects unseen during training is highly desirable yet challenging. Zero-shot object 6D pose estimation methods address this challenge by leveraging additional task-specific supervision provided by large-scale, photo-realistic synthetic datasets. However, their performance heavily depends on the quality and diversity of rendered data and they require extensive training. In this work, we show how to tackle the same task but without training on specific data. We propose FreeZe, a novel solution that harnesses the capabilities of pre-trained geometric and vision foundation models. FreeZe leverages 3D geometric descriptors learned from unrelated 3D point clouds and 2D visual features learned from web-scale 2D images to generate discriminative 3D point-level descriptors. We then estimate the 6D pose of unseen objects by 3D registration based on RANSAC. We also introduce a novel algorithm to solve ambiguous cases due to geometrically symmetric objects that is based on visual features. We comprehensively evaluate FreeZe across the seven core datasets of the BOP Benchmark, which include over a hundred 3D objects and 20,000 images captured in various scenarios. FreeZe consistently outperforms all state-of-the-art approaches, including competitors extensively trained on synthetic 6D pose estimation data. Code will be publicly available at https://andreacaraffa.github.io/freeze.
Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis
We present a Non-parametric Network for 3D point cloud analysis, Point-NN, which consists of purely non-learnable components: farthest point sampling (FPS), k-nearest neighbors (k-NN), and pooling operations, with trigonometric functions. Surprisingly, it performs well on various 3D tasks, requiring no parameters or training, and even surpasses existing fully trained models. Starting from this basic non-parametric model, we propose two extensions. First, Point-NN can serve as a base architectural framework to construct Parametric Networks by simply inserting linear layers on top. Given the superior non-parametric foundation, the derived Point-PN exhibits a high performance-efficiency trade-off with only a few learnable parameters. Second, Point-NN can be regarded as a plug-and-play module for the already trained 3D models during inference. Point-NN captures the complementary geometric knowledge and enhances existing methods for different 3D benchmarks without re-training. We hope our work may cast a light on the community for understanding 3D point clouds with non-parametric methods. Code is available at https://github.com/ZrrSkywalker/Point-NN.
Benchmarking and Analyzing Robust Point Cloud Recognition: Bag of Tricks for Defending Adversarial Examples
Deep Neural Networks (DNNs) for 3D point cloud recognition are vulnerable to adversarial examples, threatening their practical deployment. Despite the many research endeavors have been made to tackle this issue in recent years, the diversity of adversarial examples on 3D point clouds makes them more challenging to defend against than those on 2D images. For examples, attackers can generate adversarial examples by adding, shifting, or removing points. Consequently, existing defense strategies are hard to counter unseen point cloud adversarial examples. In this paper, we first establish a comprehensive, and rigorous point cloud adversarial robustness benchmark to evaluate adversarial robustness, which can provide a detailed understanding of the effects of the defense and attack methods. We then collect existing defense tricks in point cloud adversarial defenses and then perform extensive and systematic experiments to identify an effective combination of these tricks. Furthermore, we propose a hybrid training augmentation methods that consider various types of point cloud adversarial examples to adversarial training, significantly improving the adversarial robustness. By combining these tricks, we construct a more robust defense framework achieving an average accuracy of 83.45\% against various attacks, demonstrating its capability to enabling robust learners. Our codebase are open-sourced on: https://github.com/qiufan319/benchmark_pc_attack.git.
Label, Verify, Correct: A Simple Few Shot Object Detection Method
The objective of this paper is few-shot object detection (FSOD) -- the task of expanding an object detector for a new category given only a few instances for training. We introduce a simple pseudo-labelling method to source high-quality pseudo-annotations from the training set, for each new category, vastly increasing the number of training instances and reducing class imbalance; our method finds previously unlabelled instances. Na\"ively training with model predictions yields sub-optimal performance; we present two novel methods to improve the precision of the pseudo-labelling process: first, we introduce a verification technique to remove candidate detections with incorrect class labels; second, we train a specialised model to correct poor quality bounding boxes. After these two novel steps, we obtain a large set of high-quality pseudo-annotations that allow our final detector to be trained end-to-end. Additionally, we demonstrate our method maintains base class performance, and the utility of simple augmentations in FSOD. While benchmarking on PASCAL VOC and MS-COCO, our method achieves state-of-the-art or second-best performance compared to existing approaches across all number of shots.
Towards Category Unification of 3D Single Object Tracking on Point Clouds
Category-specific models are provenly valuable methods in 3D single object tracking (SOT) regardless of Siamese or motion-centric paradigms. However, such over-specialized model designs incur redundant parameters, thus limiting the broader applicability of 3D SOT task. This paper first introduces unified models that can simultaneously track objects across all categories using a single network with shared model parameters. Specifically, we propose to explicitly encode distinct attributes associated to different object categories, enabling the model to adapt to cross-category data. We find that the attribute variances of point cloud objects primarily occur from the varying size and shape (e.g., large and square vehicles v.s. small and slender humans). Based on this observation, we design a novel point set representation learning network inheriting transformer architecture, termed AdaFormer, which adaptively encodes the dynamically varying shape and size information from cross-category data in a unified manner. We further incorporate the size and shape prior derived from the known template targets into the model's inputs and learning objective, facilitating the learning of unified representation. Equipped with such designs, we construct two category-unified models SiamCUT and MoCUT.Extensive experiments demonstrate that SiamCUT and MoCUT exhibit strong generalization and training stability. Furthermore, our category-unified models outperform the category-specific counterparts by a significant margin (e.g., on KITTI dataset, 12% and 3% performance gains on the Siamese and motion paradigms). Our code will be available.
Dynamic Graph CNN for Learning on Point Clouds
Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks including ModelNet40, ShapeNetPart, and S3DIS.
Towards More Diverse and Challenging Pre-training for Point Cloud Learning: Self-Supervised Cross Reconstruction with Decoupled Views
Point cloud learning, especially in a self-supervised way without manual labels, has gained growing attention in both vision and learning communities due to its potential utility in a wide range of applications. Most existing generative approaches for point cloud self-supervised learning focus on recovering masked points from visible ones within a single view. Recognizing that a two-view pre-training paradigm inherently introduces greater diversity and variance, it may thus enable more challenging and informative pre-training. Inspired by this, we explore the potential of two-view learning in this domain. In this paper, we propose Point-PQAE, a cross-reconstruction generative paradigm that first generates two decoupled point clouds/views and then reconstructs one from the other. To achieve this goal, we develop a crop mechanism for point cloud view generation for the first time and further propose a novel positional encoding to represent the 3D relative position between the two decoupled views. The cross-reconstruction significantly increases the difficulty of pre-training compared to self-reconstruction, which enables our method to surpass previous single-modal self-reconstruction methods in 3D self-supervised learning. Specifically, it outperforms the self-reconstruction baseline (Point-MAE) by 6.5%, 7.0%, and 6.7% in three variants of ScanObjectNN with the Mlp-Linear evaluation protocol. The code is available at https://github.com/aHapBean/Point-PQAE.
Ponder: Point Cloud Pre-training via Neural Rendering
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
PointCLIP V2: Prompting CLIP and GPT for Powerful 3D Open-world Learning
Large-scale pre-trained models have shown promising open-world performance for both vision and language tasks. However, their transferred capacity on 3D point clouds is still limited and only constrained to the classification task. In this paper, we first collaborate CLIP and GPT to be a unified 3D open-world learner, named as PointCLIP V2, which fully unleashes their potential for zero-shot 3D classification, segmentation, and detection. To better align 3D data with the pre-trained language knowledge, PointCLIP V2 contains two key designs. For the visual end, we prompt CLIP via a shape projection module to generate more realistic depth maps, narrowing the domain gap between projected point clouds with natural images. For the textual end, we prompt the GPT model to generate 3D-specific text as the input of CLIP's textual encoder. Without any training in 3D domains, our approach significantly surpasses PointCLIP by +42.90%, +40.44%, and +28.75% accuracy on three datasets for zero-shot 3D classification. On top of that, V2 can be extended to few-shot 3D classification, zero-shot 3D part segmentation, and 3D object detection in a simple manner, demonstrating our generalization ability for unified 3D open-world learning.
Segment Any Point Cloud Sequences by Distilling Vision Foundation Models
Recent advancements in vision foundation models (VFMs) have opened up new possibilities for versatile and efficient visual perception. In this work, we introduce Seal, a novel framework that harnesses VFMs for segmenting diverse automotive point cloud sequences. Seal exhibits three appealing properties: i) Scalability: VFMs are directly distilled into point clouds, eliminating the need for annotations in either 2D or 3D during pretraining. ii) Consistency: Spatial and temporal relationships are enforced at both the camera-to-LiDAR and point-to-segment stages, facilitating cross-modal representation learning. iii) Generalizability: Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets. Extensive experiments conducted on eleven different point cloud datasets showcase the effectiveness and superiority of Seal. Notably, Seal achieves a remarkable 45.0% mIoU on nuScenes after linear probing, surpassing random initialization by 36.9% mIoU and outperforming prior arts by 6.1% mIoU. Moreover, Seal demonstrates significant performance gains over existing methods across 20 different few-shot fine-tuning tasks on all eleven tested point cloud datasets.
AirShot: Efficient Few-Shot Detection for Autonomous Exploration
Few-shot object detection has drawn increasing attention in the field of robotic exploration, where robots are required to find unseen objects with a few online provided examples. Despite recent efforts have been made to yield online processing capabilities, slow inference speeds of low-powered robots fail to meet the demands of real-time detection-making them impractical for autonomous exploration. Existing methods still face performance and efficiency challenges, mainly due to unreliable features and exhaustive class loops. In this work, we propose a new paradigm AirShot, and discover that, by fully exploiting the valuable correlation map, AirShot can result in a more robust and faster few-shot object detection system, which is more applicable to robotics community. The core module Top Prediction Filter (TPF) can operate on multi-scale correlation maps in both the training and inference stages. During training, TPF supervises the generation of a more representative correlation map, while during inference, it reduces looping iterations by selecting top-ranked classes, thus cutting down on computational costs with better performance. Surprisingly, this dual functionality exhibits general effectiveness and efficiency on various off-the-shelf models. Exhaustive experiments on COCO2017, VOC2014, and SubT datasets demonstrate that TPF can significantly boost the efficacy and efficiency of most off-the-shelf models, achieving up to 36.4% precision improvements along with 56.3% faster inference speed. Code and Data are at: https://github.com/ImNotPrepared/AirShot.
C4D: 4D Made from 3D through Dual Correspondences
Recovering 4D from monocular video, which jointly estimates dynamic geometry and camera poses, is an inevitably challenging problem. While recent pointmap-based 3D reconstruction methods (e.g., DUSt3R) have made great progress in reconstructing static scenes, directly applying them to dynamic scenes leads to inaccurate results. This discrepancy arises because moving objects violate multi-view geometric constraints, disrupting the reconstruction. To address this, we introduce C4D, a framework that leverages temporal Correspondences to extend existing 3D reconstruction formulation to 4D. Specifically, apart from predicting pointmaps, C4D captures two types of correspondences: short-term optical flow and long-term point tracking. We train a dynamic-aware point tracker that provides additional mobility information, facilitating the estimation of motion masks to separate moving elements from the static background, thus offering more reliable guidance for dynamic scenes. Furthermore, we introduce a set of dynamic scene optimization objectives to recover per-frame 3D geometry and camera parameters. Simultaneously, the correspondences lift 2D trajectories into smooth 3D trajectories, enabling fully integrated 4D reconstruction. Experiments show that our framework achieves complete 4D recovery and demonstrates strong performance across multiple downstream tasks, including depth estimation, camera pose estimation, and point tracking. Project Page: https://littlepure2333.github.io/C4D
Diffusion Probabilistic Models for 3D Point Cloud Generation
We present a probabilistic model for point cloud generation, which is fundamental for various 3D vision tasks such as shape completion, upsampling, synthesis and data augmentation. Inspired by the diffusion process in non-equilibrium thermodynamics, we view points in point clouds as particles in a thermodynamic system in contact with a heat bath, which diffuse from the original distribution to a noise distribution. Point cloud generation thus amounts to learning the reverse diffusion process that transforms the noise distribution to the distribution of a desired shape. Specifically, we propose to model the reverse diffusion process for point clouds as a Markov chain conditioned on certain shape latent. We derive the variational bound in closed form for training and provide implementations of the model. Experimental results demonstrate that our model achieves competitive performance in point cloud generation and auto-encoding. The code is available at https://github.com/luost26/diffusion-point-cloud.
Fast and Simple Explainability for Point Cloud Networks
We propose a fast and simple explainable AI (XAI) method for point cloud data. It computes pointwise importance with respect to a trained network downstream task. This allows better understanding of the network properties, which is imperative for safety-critical applications. In addition to debugging and visualization, our low computational complexity facilitates online feedback to the network at inference. This can be used to reduce uncertainty and to increase robustness. In this work, we introduce Feature Based Interpretability (FBI), where we compute the features' norm, per point, before the bottleneck. We analyze the use of gradients and post- and pre-bottleneck strategies, showing pre-bottleneck is preferred, in terms of smoothness and ranking. We obtain at least three orders of magnitude speedup, compared to current XAI methods, thus, scalable for big point clouds or large-scale architectures. Our approach achieves SOTA results, in terms of classification explainability. We demonstrate how the proposed measure is helpful in analyzing and characterizing various aspects of 3D learning, such as rotation invariance, robustness to out-of-distribution (OOD) outliers or domain shift and dataset bias.
A Low-Shot Object Counting Network With Iterative Prototype Adaptation
We consider low-shot counting of arbitrary semantic categories in the image using only few annotated exemplars (few-shot) or no exemplars (no-shot). The standard few-shot pipeline follows extraction of appearance queries from exemplars and matching them with image features to infer the object counts. Existing methods extract queries by feature pooling, but neglect the shape information (e.g., size and aspect), which leads to a reduced object localization accuracy and count estimates. We propose a Low-shot Object Counting network with iterative prototype Adaptation (LOCA). Our main contribution is the new object prototype extraction module, which iteratively fuses the exemplar shape and appearance queries with image features. The module is easily adapted to zero-shot scenario, enabling LOCA to cover the entire spectrum of low-shot counting problems. LOCA outperforms all recent state-of-the-art methods on FSC147 benchmark by 20-30% in RMSE on one-shot and few-shot and achieves state-of-the-art on zero-shot scenarios, while demonstrating better generalization capabilities.
Joint Representation Learning for Text and 3D Point Cloud
Recent advancements in vision-language pre-training (e.g. CLIP) have shown that vision models can benefit from language supervision. While many models using language modality have achieved great success on 2D vision tasks, the joint representation learning of 3D point cloud with text remains under-explored due to the difficulty of 3D-Text data pair acquisition and the irregularity of 3D data structure. In this paper, we propose a novel Text4Point framework to construct language-guided 3D point cloud models. The key idea is utilizing 2D images as a bridge to connect the point cloud and the language modalities. The proposed Text4Point follows the pre-training and fine-tuning paradigm. During the pre-training stage, we establish the correspondence of images and point clouds based on the readily available RGB-D data and use contrastive learning to align the image and point cloud representations. Together with the well-aligned image and text features achieved by CLIP, the point cloud features are implicitly aligned with the text embeddings. Further, we propose a Text Querying Module to integrate language information into 3D representation learning by querying text embeddings with point cloud features. For fine-tuning, the model learns task-specific 3D representations under informative language guidance from the label set without 2D images. Extensive experiments demonstrate that our model shows consistent improvement on various downstream tasks, such as point cloud semantic segmentation, instance segmentation, and object detection. The code will be available here: https://github.com/LeapLabTHU/Text4Point
LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images. Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data. In this work, we introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes. Our methodology begins with the development of a point-cloud-based network that effectively generates precise and meaningful latent tri-planes, laying the groundwork for accurate 3D mesh reconstruction. Building upon this, our Image-Point-Cloud Feature Alignment technique processes a single input image, aligning to the latent tri-planes to imbue image features with robust 3D information. This process not only enriches the image features but also facilitates the production of high-fidelity 3D meshes without the need for multi-view input, significantly reducing geometric distortions. Our approach achieves state-of-the-art high-fidelity 3D mesh reconstruction from a single image in just 6 seconds, and experiments on various datasets demonstrate its effectiveness.
Duoduo CLIP: Efficient 3D Understanding with Multi-View Images
We introduce Duoduo CLIP, a model for 3D representation learning that learns shape encodings from multi-view images instead of point-clouds. The choice of multi-view images allows us to leverage 2D priors from off-the-shelf CLIP models to facilitate fine-tuning with 3D data. Our approach not only shows better generalization compared to existing point cloud methods, but also reduces GPU requirements and training time. In addition, we modify the model with cross-view attention to leverage information across multiple frames of the object which further boosts performance. Compared to the current SOTA point cloud method that requires 480 A100 hours to train 1 billion model parameters we only require 57 A5000 hours and 87 million parameters. Multi-view images also provide more flexibility in use cases compared to point clouds. This includes being able to encode objects with a variable number of images, with better performance when more views are used. This is in contrast to point cloud based methods, where an entire scan or model of an object is required. We showcase this flexibility with object retrieval from images of real-world objects. Our model also achieves better performance in more fine-grained text to shape retrieval, demonstrating better text-and-shape alignment than point cloud based models.
Sonata: Self-Supervised Learning of Reliable Point Representations
In this paper, we question whether we have a reliable self-supervised point cloud model that can be used for diverse 3D tasks via simple linear probing, even with limited data and minimal computation. We find that existing 3D self-supervised learning approaches fall short when evaluated on representation quality through linear probing. We hypothesize that this is due to what we term the "geometric shortcut", which causes representations to collapse to low-level spatial features. This challenge is unique to 3D and arises from the sparse nature of point cloud data. We address it through two key strategies: obscuring spatial information and enhancing the reliance on input features, ultimately composing a Sonata of 140k point clouds through self-distillation. Sonata is simple and intuitive, yet its learned representations are strong and reliable: zero-shot visualizations demonstrate semantic grouping, alongside strong spatial reasoning through nearest-neighbor relationships. Sonata demonstrates exceptional parameter and data efficiency, tripling linear probing accuracy (from 21.8% to 72.5%) on ScanNet and nearly doubling performance with only 1% of the data compared to previous approaches. Full fine-tuning further advances SOTA across both 3D indoor and outdoor perception tasks.
Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation
Whilst the availability of 3D LiDAR point cloud data has significantly grown in recent years, annotation remains expensive and time-consuming, leading to a demand for semi-supervised semantic segmentation methods with application domains such as autonomous driving. Existing work very often employs relatively large segmentation backbone networks to improve segmentation accuracy, at the expense of computational costs. In addition, many use uniform sampling to reduce ground truth data requirements for learning needed, often resulting in sub-optimal performance. To address these issues, we propose a new pipeline that employs a smaller architecture, requiring fewer ground-truth annotations to achieve superior segmentation accuracy compared to contemporary approaches. This is facilitated via a novel Sparse Depthwise Separable Convolution module that significantly reduces the network parameter count while retaining overall task performance. To effectively sub-sample our training data, we propose a new Spatio-Temporal Redundant Frame Downsampling (ST-RFD) method that leverages knowledge of sensor motion within the environment to extract a more diverse subset of training data frame samples. To leverage the use of limited annotated data samples, we further propose a soft pseudo-label method informed by LiDAR reflectivity. Our method outperforms contemporary semi-supervised work in terms of mIoU, using less labeled data, on the SemanticKITTI (59.5@5%) and ScribbleKITTI (58.1@5%) benchmark datasets, based on a 2.3x reduction in model parameters and 641x fewer multiply-add operations whilst also demonstrating significant performance improvement on limited training data (i.e., Less is More).
UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting
The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at https://github.com/wangzy22/UniPre3D.
Enhancing Environmental Robustness in Few-shot Learning via Conditional Representation Learning
Few-shot learning (FSL) has recently been extensively utilized to overcome the scarcity of training data in domain-specific visual recognition. In real-world scenarios, environmental factors such as complex backgrounds, varying lighting conditions, long-distance shooting, and moving targets often cause test images to exhibit numerous incomplete targets or noise disruptions. However, current research on evaluation datasets and methodologies has largely ignored the concept of "environmental robustness", which refers to maintaining consistent performance in complex and diverse physical environments. This neglect has led to a notable decline in the performance of FSL models during practical testing compared to their training performance. To bridge this gap, we introduce a new real-world multi-domain few-shot learning (RD-FSL) benchmark, which includes four domains and six evaluation datasets. The test images in this benchmark feature various challenging elements, such as camouflaged objects, small targets, and blurriness. Our evaluation experiments reveal that existing methods struggle to utilize training images effectively to generate accurate feature representations for challenging test images. To address this problem, we propose a novel conditional representation learning network (CRLNet) that integrates the interactions between training and testing images as conditional information in their respective representation processes. The main goal is to reduce intra-class variance or enhance inter-class variance at the feature representation level. Finally, comparative experiments reveal that CRLNet surpasses the current state-of-the-art methods, achieving performance improvements ranging from 6.83% to 16.98% across diverse settings and backbones. The source code and dataset are available at https://github.com/guoqianyu-alberta/Conditional-Representation-Learning.
SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds
With the recent availability and affordability of commercial depth sensors and 3D scanners, an increasing number of 3D (i.e., RGBD, point cloud) datasets have been publicized to facilitate research in 3D computer vision. However, existing datasets either cover relatively small areas or have limited semantic annotations. Fine-grained understanding of urban-scale 3D scenes is still in its infancy. In this paper, we introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km^2. Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset. In addition to the more commonly encountered categories such as road and vegetation, urban-level categories including rail, bridge, and river are also included in our dataset. Based on this dataset, we further build a benchmark to evaluate the performance of state-of-the-art segmentation algorithms. In particular, we provide a comprehensive analysis and identify several key challenges limiting urban-scale point cloud understanding. The dataset is available at http://point-cloud-analysis.cs.ox.ac.uk.
BEVPlace: Learning LiDAR-based Place Recognition using Bird's Eye View Images
Place recognition is a key module for long-term SLAM systems. Current LiDAR-based place recognition methods usually use representations of point clouds such as unordered points or range images. These methods achieve high recall rates of retrieval, but their performance may degrade in the case of view variation or scene changes. In this work, we explore the potential of a different representation in place recognition, i.e. bird's eye view (BEV) images. We observe that the structural contents of BEV images are less influenced by rotations and translations of point clouds. We validate that, without any delicate design, a simple VGGNet trained on BEV images achieves comparable performance with the state-of-the-art place recognition methods in scenes of slight viewpoint changes. For more robust place recognition, we design a rotation-invariant network called BEVPlace. We use group convolution to extract rotation-equivariant local features from the images and NetVLAD for global feature aggregation. In addition, we observe that the distance between BEV features is correlated with the geometry distance of point clouds. Based on the observation, we develop a method to estimate the position of the query cloud, extending the usage of place recognition. The experiments conducted on large-scale public datasets show that our method 1) achieves state-of-the-art performance in terms of recall rates, 2) is robust to view changes, 3) shows strong generalization ability, and 4) can estimate the positions of query point clouds. Source codes are publicly available at https://github.com/zjuluolun/BEVPlace.
Self-Supervised Point Cloud Completion via Inpainting
When navigating in urban environments, many of the objects that need to be tracked and avoided are heavily occluded. Planning and tracking using these partial scans can be challenging. The aim of this work is to learn to complete these partial point clouds, giving us a full understanding of the object's geometry using only partial observations. Previous methods achieve this with the help of complete, ground-truth annotations of the target objects, which are available only for simulated datasets. However, such ground truth is unavailable for real-world LiDAR data. In this work, we present a self-supervised point cloud completion algorithm, PointPnCNet, which is trained only on partial scans without assuming access to complete, ground-truth annotations. Our method achieves this via inpainting. We remove a portion of the input data and train the network to complete the missing region. As it is difficult to determine which regions were occluded in the initial cloud and which were synthetically removed, our network learns to complete the full cloud, including the missing regions in the initial partial cloud. We show that our method outperforms previous unsupervised and weakly-supervised methods on both the synthetic dataset, ShapeNet, and real-world LiDAR dataset, Semantic KITTI.
Hyperspherical Embedding for Point Cloud Completion
Most real-world 3D measurements from depth sensors are incomplete, and to address this issue the point cloud completion task aims to predict the complete shapes of objects from partial observations. Previous works often adapt an encoder-decoder architecture, where the encoder is trained to extract embeddings that are used as inputs to generate predictions from the decoder. However, the learned embeddings have sparse distribution in the feature space, which leads to worse generalization results during testing. To address these problems, this paper proposes a hyperspherical module, which transforms and normalizes embeddings from the encoder to be on a unit hypersphere. With the proposed module, the magnitude and direction of the output hyperspherical embedding are decoupled and only the directional information is optimized. We theoretically analyze the hyperspherical embedding and show that it enables more stable training with a wider range of learning rates and more compact embedding distributions. Experiment results show consistent improvement of point cloud completion in both single-task and multi-task learning, which demonstrates the effectiveness of the proposed method.
RBGNet: Ray-based Grouping for 3D Object Detection
As a fundamental problem in computer vision, 3D object detection is experiencing rapid growth. To extract the point-wise features from the irregularly and sparsely distributed points, previous methods usually take a feature grouping module to aggregate the point features to an object candidate. However, these methods have not yet leveraged the surface geometry of foreground objects to enhance grouping and 3D box generation. In this paper, we propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds. In order to learn better representations of object shape to enhance cluster features for predicting 3D boxes, we propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays uniformly emitted from cluster centers. Considering the fact that foreground points are more meaningful for box estimation, we design a novel foreground biased sampling strategy in downsample process to sample more points on object surfaces and further boost the detection performance. Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains. Code will be available at https://github.com/Haiyang-W/RBGNet.
PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection
The remarkable breakthroughs in point cloud representation learning have boosted their usage in real-world applications such as self-driving cars and virtual reality. However, these applications usually have an urgent requirement for not only accurate but also efficient 3D object detection. Recently, knowledge distillation has been proposed as an effective model compression technique, which transfers the knowledge from an over-parameterized teacher to a lightweight student and achieves consistent effectiveness in 2D vision. However, due to point clouds' sparsity and irregularity, directly applying previous image-based knowledge distillation methods to point cloud detectors usually leads to unsatisfactory performance. To fill the gap, this paper proposes PointDistiller, a structured knowledge distillation framework for point clouds-based 3D detection. Concretely, PointDistiller includes local distillation which extracts and distills the local geometric structure of point clouds with dynamic graph convolution and reweighted learning strategy, which highlights student learning on the crucial points or voxels to improve knowledge distillation efficiency. Extensive experiments on both voxels-based and raw points-based detectors have demonstrated the effectiveness of our method over seven previous knowledge distillation methods. For instance, our 4X compressed PointPillars student achieves 2.8 and 3.4 mAP improvements on BEV and 3D object detection, outperforming its teacher by 0.9 and 1.8 mAP, respectively. Codes have been released at https://github.com/RunpeiDong/PointDistiller.
LidarGait: Benchmarking 3D Gait Recognition with Point Clouds
Video-based gait recognition has achieved impressive results in constrained scenarios. However, visual cameras neglect human 3D structure information, which limits the feasibility of gait recognition in the 3D wild world. Instead of extracting gait features from images, this work explores precise 3D gait features from point clouds and proposes a simple yet efficient 3D gait recognition framework, termed LidarGait. Our proposed approach projects sparse point clouds into depth maps to learn the representations with 3D geometry information, which outperforms existing point-wise and camera-based methods by a significant margin. Due to the lack of point cloud datasets, we built the first large-scale LiDAR-based gait recognition dataset, SUSTech1K, collected by a LiDAR sensor and an RGB camera. The dataset contains 25,239 sequences from 1,050 subjects and covers many variations, including visibility, views, occlusions, clothing, carrying, and scenes. Extensive experiments show that (1) 3D structure information serves as a significant feature for gait recognition. (2) LidarGait outperforms existing point-based and silhouette-based methods by a significant margin, while it also offers stable cross-view results. (3) The LiDAR sensor is superior to the RGB camera for gait recognition in the outdoor environment. The source code and dataset have been made available at https://lidargait.github.io.
Unsupervised Semantic Segmentation of 3D Point Clouds via Cross-modal Distillation and Super-Voxel Clustering
Semantic segmentation of point clouds usually requires exhausting efforts of human annotations, hence it attracts wide attention to the challenging topic of learning from unlabeled or weaker forms of annotations. In this paper, we take the first attempt for fully unsupervised semantic segmentation of point clouds, which aims to delineate semantically meaningful objects without any form of annotations. Previous works of unsupervised pipeline on 2D images fails in this task of point clouds, due to: 1) Clustering Ambiguity caused by limited magnitude of data and imbalanced class distribution; 2) Irregularity Ambiguity caused by the irregular sparsity of point cloud. Therefore, we propose a novel framework, PointDC, which is comprised of two steps that handle the aforementioned problems respectively: Cross-Modal Distillation (CMD) and Super-Voxel Clustering (SVC). In the first stage of CMD, multi-view visual features are back-projected to the 3D space and aggregated to a unified point feature to distill the training of the point representation. In the second stage of SVC, the point features are aggregated to super-voxels and then fed to the iterative clustering process for excavating semantic classes. PointDC yields a significant improvement over the prior state-of-the-art unsupervised methods, on both the ScanNet-v2 (+18.4 mIoU) and S3DIS (+11.5 mIoU) semantic segmentation benchmarks.
3DCNN-DQN-RNN: A Deep Reinforcement Learning Framework for Semantic Parsing of Large-scale 3D Point Clouds
Semantic parsing of large-scale 3D point clouds is an important research topic in computer vision and remote sensing fields. Most existing approaches utilize hand-crafted features for each modality independently and combine them in a heuristic manner. They often fail to consider the consistency and complementary information among features adequately, which makes them difficult to capture high-level semantic structures. The features learned by most of the current deep learning methods can obtain high-quality image classification results. However, these methods are hard to be applied to recognize 3D point clouds due to unorganized distribution and various point density of data. In this paper, we propose a 3DCNN-DQN-RNN method which fuses the 3D convolutional neural network (CNN), Deep Q-Network (DQN) and Residual recurrent neural network (RNN) for an efficient semantic parsing of large-scale 3D point clouds. In our method, an eye window under control of the 3D CNN and DQN can localize and segment the points of the object class efficiently. The 3D CNN and Residual RNN further extract robust and discriminative features of the points in the eye window, and thus greatly enhance the parsing accuracy of large-scale point clouds. Our method provides an automatic process that maps the raw data to the classification results. It also integrates object localization, segmentation and classification into one framework. Experimental results demonstrate that the proposed method outperforms the state-of-the-art point cloud classification methods.
Surface Representation for Point Clouds
Most prior work represents the shapes of point clouds by coordinates. However, it is insufficient to describe the local geometry directly. In this paper, we present RepSurf (representative surfaces), a novel representation of point clouds to explicitly depict the very local structure. We explore two variants of RepSurf, Triangular RepSurf and Umbrella RepSurf inspired by triangle meshes and umbrella curvature in computer graphics. We compute the representations of RepSurf by predefined geometric priors after surface reconstruction. RepSurf can be a plug-and-play module for most point cloud models thanks to its free collaboration with irregular points. Based on a simple baseline of PointNet++ (SSG version), Umbrella RepSurf surpasses the previous state-of-the-art by a large margin for classification, segmentation and detection on various benchmarks in terms of performance and efficiency. With an increase of around 0.008M number of parameters, 0.04G FLOPs, and 1.12ms inference time, our method achieves 94.7\% (+0.5\%) on ModelNet40, and 84.6\% (+1.8\%) on ScanObjectNN for classification, while 74.3\% (+0.8\%) mIoU on S3DIS 6-fold, and 70.0\% (+1.6\%) mIoU on ScanNet for segmentation. For detection, previous state-of-the-art detector with our RepSurf obtains 71.2\% (+2.1\%) mAP_{25}, 54.8\% (+2.0\%) mAP_{50} on ScanNetV2, and 64.9\% (+1.9\%) mAP_{25}, 47.7\% (+2.5\%) mAP_{50} on SUN RGB-D. Our lightweight Triangular RepSurf performs its excellence on these benchmarks as well. The code is publicly available at https://github.com/hancyran/RepSurf.
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction
We present a new method for real-time non-rigid dense correspondence between point clouds based on structured shape construction. Our method, termed Deep Point Correspondence (DPC), requires a fraction of the training data compared to previous techniques and presents better generalization capabilities. Until now, two main approaches have been suggested for the dense correspondence problem. The first is a spectral-based approach that obtains great results on synthetic datasets but requires mesh connectivity of the shapes and long inference processing time while being unstable in real-world scenarios. The second is a spatial approach that uses an encoder-decoder framework to regress an ordered point cloud for the matching alignment from an irregular input. Unfortunately, the decoder brings considerable disadvantages, as it requires a large amount of training data and struggles to generalize well in cross-dataset evaluations. DPC's novelty lies in its lack of a decoder component. Instead, we use latent similarity and the input coordinates themselves to construct the point cloud and determine correspondence, replacing the coordinate regression done by the decoder. Extensive experiments show that our construction scheme leads to a performance boost in comparison to recent state-of-the-art correspondence methods. Our code is publicly available at https://github.com/dvirginz/DPC.
ECLAIR: A High-Fidelity Aerial LiDAR Dataset for Semantic Segmentation
We introduce ECLAIR (Extended Classification of Lidar for AI Recognition), a new outdoor large-scale aerial LiDAR dataset designed specifically for advancing research in point cloud semantic segmentation. As the most extensive and diverse collection of its kind to date, the dataset covers a total area of 10km^2 with close to 600 million points and features eleven distinct object categories. To guarantee the dataset's quality and utility, we have thoroughly curated the point labels through an internal team of experts, ensuring accuracy and consistency in semantic labeling. The dataset is engineered to move forward the fields of 3D urban modeling, scene understanding, and utility infrastructure management by presenting new challenges and potential applications. As a benchmark, we report qualitative and quantitative analysis of a voxel-based point cloud segmentation approach based on the Minkowski Engine.
