- A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning Structured belief states are crucial for user goal tracking and database query in task-oriented dialog systems. However, training belief trackers often requires expensive turn-level annotations of every user utterance. In this paper we aim at alleviating the reliance on belief state labels in building end-to-end dialog systems, by leveraging unlabeled dialog data towards semi-supervised learning. We propose a probabilistic dialog model, called the LAtent BElief State (LABES) model, where belief states are represented as discrete latent variables and jointly modeled with system responses given user inputs. Such latent variable modeling enables us to develop semi-supervised learning under the principled variational learning framework. Furthermore, we introduce LABES-S2S, which is a copy-augmented Seq2Seq model instantiation of LABES. In supervised experiments, LABES-S2S obtains strong results on three benchmark datasets of different scales. In utilizing unlabeled dialog data, semi-supervised LABES-S2S significantly outperforms both supervised-only and semi-supervised baselines. Remarkably, we can reduce the annotation demands to 50% without performance loss on MultiWOZ. 4 authors · Sep 17, 2020
- Improving Dialog Systems for Negotiation with Personality Modeling In this paper, we explore the ability to model and infer personality types of opponents, predict their responses, and use this information to adapt a dialog agent's high-level strategy in negotiation tasks. Inspired by the idea of incorporating a theory of mind (ToM) into machines, we introduce a probabilistic formulation to encapsulate the opponent's personality type during both learning and inference. We test our approach on the CraigslistBargain dataset and show that our method using ToM inference achieves a 20% higher dialog agreement rate compared to baselines on a mixed population of opponents. We also find that our model displays diverse negotiation behavior with different types of opponents. 3 authors · Oct 19, 2020