Spaces:
Runtime error
Runtime error
File size: 1,141 Bytes
9564348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import pandas as pd
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.datasets import load_diabetes
from sklearn.multioutput import MultiOutputRegressor
# Assume y is now a DataFrame with multiple columns
X, y = load_diabetes(return_X_y=True, as_frame=True)
y = pd.DataFrame([y, y]).T
# Make the estimator multi-output capable
est = MultiOutputRegressor(HistGradientBoostingRegressor()).fit(X, y)
def predict(input_df):
prediction = est.predict(input_df)
# Assume y has columns named "target1", "target2", etc.
return pd.DataFrame(prediction, columns=y.columns)
iface = gr.Interface(
fn=predict,
inputs=gr.Dataframe(
value=X.head(1),
headers=list(X.columns),
col_count=(X.shape[1], "fixed"),
row_count=(1, "dynamic"),
datatype=X.dtypes.apply(str).replace("float64", "number").values.tolist(),
),
outputs=gr.Dataframe(
value=y.head(1),
headers=list(y.columns),
col_count=(y.shape[1], "fixed"),
datatype=y.dtypes.apply(str).replace("float64", "number").values.tolist(),
),
)
iface.launch()
|