naykun's picture
small qol change - add export to .zip option + make it automatic (#3)
88e755c verified
import os
import uuid
import numpy as np
import random
import tempfile
import zipfile
import spaces
from PIL import Image
from diffusers import QwenImageLayeredPipeline
import torch
from pptx import Presentation
import gradio as gr
LOG_DIR = "/tmp/local"
MAX_SEED = np.iinfo(np.int32).max
from huggingface_hub import login
login(token=os.environ.get('hf'))
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = QwenImageLayeredPipeline.from_pretrained("Qwen/Qwen-Image-Layered", torch_dtype=dtype).to(device)
# pipeline.set_progress_bar_config(disable=None)
def ensure_dirname(path: str):
if path and not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def random_str(length=8):
return uuid.uuid4().hex[:length]
def imagelist_to_pptx(img_files):
with Image.open(img_files[0]) as img:
img_width_px, img_height_px = img.size
def px_to_emu(px, dpi=96):
inch = px / dpi
emu = inch * 914400
return int(emu)
prs = Presentation()
prs.slide_width = px_to_emu(img_width_px)
prs.slide_height = px_to_emu(img_height_px)
slide = prs.slides.add_slide(prs.slide_layouts[6])
left = top = 0
for img_path in img_files:
slide.shapes.add_picture(img_path, left, top, width=px_to_emu(img_width_px), height=px_to_emu(img_height_px))
with tempfile.NamedTemporaryFile(suffix=".pptx", delete=False) as tmp:
prs.save(tmp.name)
return tmp.name
def export_gallery(images):
# images: list of image file paths
images = [e[0] for e in images]
pptx_path = imagelist_to_pptx(images)
return pptx_path
def export_gallery_zip(images):
# images: list of tuples (file_path, caption)
images = [e[0] for e in images]
with tempfile.NamedTemporaryFile(suffix=".zip", delete=False) as tmp:
with zipfile.ZipFile(tmp.name, 'w', zipfile.ZIP_DEFLATED) as zipf:
for i, img_path in enumerate(images):
# Get the file extension from original file
ext = os.path.splitext(img_path)[1] or '.png'
# Add each image to the zip with a numbered filename
zipf.write(img_path, f"layer_{i+1}{ext}")
return tmp.name
@spaces.GPU(duration=300)
def infer(input_image,
seed=777,
randomize_seed=False,
prompt=None,
neg_prompt=" ",
true_guidance_scale=4.0,
num_inference_steps=50,
layer=4,
cfg_norm=True,
use_en_prompt=True):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if isinstance(input_image, list):
input_image = input_image[0]
if isinstance(input_image, str):
pil_image = Image.open(input_image).convert("RGB").convert("RGBA")
elif isinstance(input_image, Image.Image):
pil_image = input_image.convert("RGB").convert("RGBA")
elif isinstance(input_image, np.ndarray):
pil_image = Image.fromarray(input_image).convert("RGB").convert("RGBA")
else:
raise ValueError("Unsupported input_image type: %s" % type(input_image))
inputs = {
"image": pil_image,
"generator": torch.Generator(device='cuda').manual_seed(seed),
"true_cfg_scale": true_guidance_scale,
"prompt": prompt,
"negative_prompt": neg_prompt,
"num_inference_steps": num_inference_steps,
"num_images_per_prompt": 1,
"layers": layer,
"resolution": 640, # Using different bucket (640, 1024) to determine the resolution. For this version, 640 is recommended
"cfg_normalize": cfg_norm, # Whether enable cfg normalization.
"use_en_prompt": use_en_prompt,
}
print(inputs)
with torch.inference_mode():
output = pipeline(**inputs)
output_images = output.images[0]
output = []
temp_files = []
for i, image in enumerate(output_images):
output.append(image)
# Save to temp file for export
tmp = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
image.save(tmp.name)
temp_files.append(tmp.name)
# Generate PPTX
pptx_path = imagelist_to_pptx(temp_files)
# Generate ZIP
with tempfile.NamedTemporaryFile(suffix=".zip", delete=False) as tmp:
with zipfile.ZipFile(tmp.name, 'w', zipfile.ZIP_DEFLATED) as zipf:
for i, img_path in enumerate(temp_files):
zipf.write(img_path, f"layer_{i+1}.png")
zip_path = tmp.name
return output, pptx_path, zip_path
ensure_dirname(LOG_DIR)
examples = [
"assets/test_images/1.png",
"assets/test_images/2.png",
"assets/test_images/3.png",
"assets/test_images/4.png",
"assets/test_images/5.png",
"assets/test_images/6.png",
"assets/test_images/7.png",
"assets/test_images/8.png",
"assets/test_images/9.png",
"assets/test_images/10.png",
"assets/test_images/11.png",
"assets/test_images/12.png",
"assets/test_images/13.png",
]
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/layered/qwen-image-layered-logo.png" alt="Qwen-Image-Layered Logo" width="600" style="display: block; margin: 0 auto;">')
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", image_mode="RGBA")
prompt = gr.Textbox(
label="Prompt (Optional)",
placeholder="Please enter the prompt to guide the decomposition (Optional)",
value="",
lines=2,
)
with gr.Accordion("Advanced Settings", open=False):
neg_prompt = gr.Textbox(
label="Negative Prompt (Optional)",
placeholder="Please enter the negative prompt",
value=" ",
lines=2,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
layer = gr.Slider(
label="Layers",
minimum=2,
maximum=10,
step=1,
value=4,
)
cfg_norm = gr.Checkbox(label="Whether enable CFG normalization", value=True)
use_en_prompt = gr.Checkbox(label="Automatic caption language if no prompt provided, True for EN, False for ZH", value=True)
run_button = gr.Button("Decompose!", variant="primary")
with gr.Column(scale=2):
gallery = gr.Gallery(label="Layers", columns=4, rows=1, format="png")
with gr.Row():
export_file = gr.File(label="Download PPTX")
export_zip_file = gr.File(label="Download ZIP")
gr.Examples(examples=examples,
inputs=[input_image],
outputs=[gallery],
fn=infer,
examples_per_page=14,
cache_examples=False,
run_on_click=True
)
run_button.click(
fn=infer,
inputs=[
input_image,
seed,
randomize_seed,
prompt,
neg_prompt,
true_guidance_scale,
num_inference_steps,
layer,
cfg_norm,
use_en_prompt,
],
outputs=[gallery, export_file, export_zip_file],
)
if __name__ == "__main__":
demo.launch()