Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,063 Bytes
bf5bf84 01e40c4 92b2809 01e40c4 bf5bf84 59bff29 20eb1ad bf5bf84 92b2809 33759f1 bf5bf84 92b2809 bf5bf84 92b2809 bf5bf84 376e544 a7ac916 bf5bf84 2015b5b bf5bf84 2015b5b 92b2809 2015b5b bf5bf84 2015b5b 92b2809 2015b5b 92b2809 bf5bf84 2015b5b 92b2809 2015b5b bf5bf84 92b2809 bf5bf84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import uuid
import numpy as np
import random
import tempfile
import spaces
import zipfile
from PIL import Image
from diffusers import QwenImageLayeredPipeline
import torch
from pptx import Presentation
import gradio as gr
LOG_DIR = "/tmp/local"
MAX_SEED = np.iinfo(np.int32).max
from huggingface_hub import login
login(token=os.environ.get('hf'))
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = QwenImageLayeredPipeline.from_pretrained("Qwen/Qwen-Image-Layered", torch_dtype=dtype).to(device)
# pipeline.set_progress_bar_config(disable=None)
def ensure_dirname(path: str):
if path and not os.path.exists(path):
os.makedirs(path, exist_ok=True)
def random_str(length=8):
return uuid.uuid4().hex[:length]
def imagelist_to_pptx(img_files):
with Image.open(img_files[0]) as img:
img_width_px, img_height_px = img.size
def px_to_emu(px, dpi=96):
inch = px / dpi
emu = inch * 914400
return int(emu)
prs = Presentation()
prs.slide_width = px_to_emu(img_width_px)
prs.slide_height = px_to_emu(img_height_px)
slide = prs.slides.add_slide(prs.slide_layouts[6])
left = top = 0
for img_path in img_files:
slide.shapes.add_picture(img_path, left, top, width=px_to_emu(img_width_px), height=px_to_emu(img_height_px))
with tempfile.NamedTemporaryFile(suffix=".pptx", delete=False) as tmp:
prs.save(tmp.name)
return tmp.name
def export_gallery(images):
# images: list of image file paths
images = [e[0] for e in images]
pptx_path = imagelist_to_pptx(images)
return pptx_path
def export_gallery_zip(images):
# images: list of tuples (file_path, caption)
images = [e[0] for e in images]
with tempfile.NamedTemporaryFile(suffix=".zip", delete=False) as tmp:
with zipfile.ZipFile(tmp.name, 'w', zipfile.ZIP_DEFLATED) as zipf:
for i, img_path in enumerate(images):
# Get the file extension from original file
ext = os.path.splitext(img_path)[1] or '.png'
# Add each image to the zip with a numbered filename
zipf.write(img_path, f"layer_{i+1}{ext}")
return tmp.name
@spaces.GPU(duration=180)
def infer(input_image,
seed=777,
randomize_seed=False,
prompt=None,
neg_prompt=" ",
true_guidance_scale=4.0,
num_inference_steps=50,
layer=4,
cfg_norm=True,
use_en_prompt=True):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if isinstance(input_image, list):
input_image = input_image[0]
if isinstance(input_image, str):
pil_image = Image.open(input_image).convert("RGB").convert("RGBA")
elif isinstance(input_image, Image.Image):
pil_image = input_image.convert("RGB").convert("RGBA")
elif isinstance(input_image, np.ndarray):
pil_image = Image.fromarray(input_image).convert("RGB").convert("RGBA")
else:
raise ValueError("Unsupported input_image type: %s" % type(input_image))
inputs = {
"image": pil_image,
"generator": torch.Generator(device='cuda').manual_seed(seed),
"true_cfg_scale": true_guidance_scale,
"prompt": prompt,
"negative_prompt": neg_prompt,
"num_inference_steps": num_inference_steps,
"num_images_per_prompt": 1,
"layers": layer,
"resolution": 640, # Using different bucket (640, 1024) to determine the resolution. For this version, 640 is recommended
"cfg_normalize": cfg_norm, # Whether enable cfg normalization.
"use_en_prompt": use_en_prompt,
}
print(inputs)
with torch.inference_mode():
output = pipeline(**inputs)
output_images = output.images[0]
output = []
temp_files = []
for i, image in enumerate(output_images):
output.append(image)
# Save to temp file for export
tmp = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
image.save(tmp.name)
temp_files.append(tmp.name)
# Generate PPTX
pptx_path = imagelist_to_pptx(temp_files)
# Generate ZIP
with tempfile.NamedTemporaryFile(suffix=".zip", delete=False) as tmp:
with zipfile.ZipFile(tmp.name, 'w', zipfile.ZIP_DEFLATED) as zipf:
for i, img_path in enumerate(temp_files):
zipf.write(img_path, f"layer_{i+1}.png")
zip_path = tmp.name
return output, pptx_path, zip_path
ensure_dirname(LOG_DIR)
examples = [
"assets/test_images/1.png",
"assets/test_images/2.png",
"assets/test_images/3.png",
"assets/test_images/4.png",
"assets/test_images/5.png",
"assets/test_images/6.png",
"assets/test_images/7.png",
"assets/test_images/8.png",
"assets/test_images/9.png",
"assets/test_images/10.png",
"assets/test_images/11.png",
"assets/test_images/12.png",
"assets/test_images/13.png",
]
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/layered/qwen-image-layered-logo.png" alt="Qwen-Image-Layered Logo" width="600" style="display: block; margin: 0 auto;">')
gr.Markdown("""
The text prompt is intended to describe the overall content of the input image—including elements that may be partially occluded (e.g., you may specify the text hidden behind a foreground object). It is not designed to control the semantic content of individual layers explicitly.
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", image_mode="RGBA")
with gr.Accordion("Advanced Settings", open=False):
prompt = gr.Textbox(
label="Prompt (Optional)",
placeholder="Please enter the prompt to descibe the image. (Optional)",
value="",
lines=2,
)
neg_prompt = gr.Textbox(
label="Negative Prompt (Optional)",
placeholder="Please enter the negative prompt",
value=" ",
lines=2,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
layer = gr.Slider(
label="Layers",
minimum=2,
maximum=10,
step=1,
value=4,
)
cfg_norm = gr.Checkbox(label="Whether enable CFG normalization", value=True)
use_en_prompt = gr.Checkbox(label="Automatic caption language if no prompt provided, True for EN, False for ZH", value=True)
run_button = gr.Button("Decompose!", variant="primary")
with gr.Column(scale=2):
gallery = gr.Gallery(label="Layers", columns=4, rows=1, format="png")
with gr.Row():
export_file = gr.File(label="Download PPTX")
export_zip_file = gr.File(label="Download ZIP")
gr.Examples(examples=examples,
inputs=[input_image],
outputs=[gallery, export_file, export_zip_file],
fn=infer,
examples_per_page=14,
cache_examples=False,
run_on_click=True
)
run_button.click(
fn=infer,
inputs=[
input_image,
seed,
randomize_seed,
prompt,
neg_prompt,
true_guidance_scale,
num_inference_steps,
layer,
cfg_norm,
use_en_prompt,
],
outputs=[gallery, export_file, export_zip_file],
)
if __name__ == "__main__":
demo.launch() |