TAPT_CeLLaTe_llrd_only
This model is a fine-tuned version of Mardiyyah/cellate1.0-tapt_freeze_llrd_ww_mask-LR_2e-05 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1153
- Precision: 0.8168
- Recall: 0.8404
- F1: 0.8285
- Accuracy: 0.9743
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 1.5314 | 1.0 | 55 | 0.6843 | 0.0 | 0.0 | 0.0 | 0.8947 |
| 0.4343 | 2.0 | 110 | 0.2517 | 0.3447 | 0.3526 | 0.3486 | 0.9195 |
| 0.2147 | 3.0 | 165 | 0.1484 | 0.6493 | 0.7204 | 0.6830 | 0.9563 |
| 0.1396 | 4.0 | 220 | 0.1172 | 0.7452 | 0.7599 | 0.7524 | 0.9681 |
| 0.1112 | 5.0 | 275 | 0.1102 | 0.7370 | 0.8176 | 0.7752 | 0.9660 |
| 0.0892 | 6.0 | 330 | 0.0984 | 0.7994 | 0.7994 | 0.7994 | 0.9713 |
| 0.0747 | 7.0 | 385 | 0.1059 | 0.8238 | 0.8100 | 0.8169 | 0.9735 |
| 0.0643 | 8.0 | 440 | 0.1112 | 0.7768 | 0.8252 | 0.8003 | 0.9703 |
| 0.0533 | 9.0 | 495 | 0.1079 | 0.8361 | 0.8298 | 0.8330 | 0.9748 |
| 0.0473 | 10.0 | 550 | 0.1082 | 0.8121 | 0.8343 | 0.8231 | 0.9736 |
| 0.0445 | 11.0 | 605 | 0.1094 | 0.8468 | 0.8146 | 0.8304 | 0.9750 |
| 0.0375 | 12.0 | 660 | 0.1047 | 0.8477 | 0.8374 | 0.8425 | 0.9762 |
| 0.0312 | 13.0 | 715 | 0.1052 | 0.8149 | 0.8298 | 0.8223 | 0.9741 |
| 0.0299 | 14.0 | 770 | 0.1095 | 0.8070 | 0.8389 | 0.8227 | 0.9727 |
| 0.0269 | 15.0 | 825 | 0.1195 | 0.7874 | 0.8389 | 0.8124 | 0.9718 |
| 0.0238 | 16.0 | 880 | 0.1096 | 0.8301 | 0.8389 | 0.8345 | 0.9749 |
| 0.0218 | 17.0 | 935 | 0.1134 | 0.8070 | 0.8450 | 0.8255 | 0.9741 |
| 0.022 | 18.0 | 990 | 0.1174 | 0.8038 | 0.8404 | 0.8217 | 0.9736 |
| 0.02 | 19.0 | 1045 | 0.1189 | 0.8151 | 0.8374 | 0.8261 | 0.9741 |
| 0.02 | 20.0 | 1100 | 0.1153 | 0.8168 | 0.8404 | 0.8285 | 0.9743 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 2