progpedia19_codeberta_ep30_bs16_lr2e-05_l512_s42_ppn_loss
This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1866
- Accuracy: 0.9938
- Recall: 0.8333
- Precision: 1.0
- F1: 0.9091
- F Beta Score: 0.8784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.3894 | 1.0 | 94 | 0.2495 | 0.9969 | 0.9167 | 1.0 | 0.9565 | 0.9408 |
| 0.3135 | 2.0 | 188 | 0.2897 | 0.9938 | 0.8333 | 1.0 | 0.9091 | 0.8784 |
| 0.0006 | 3.0 | 282 | 0.3512 | 0.9938 | 0.8333 | 1.0 | 0.9091 | 0.8784 |
| 0.0007 | 4.0 | 376 | 0.1866 | 0.9938 | 0.8333 | 1.0 | 0.9091 | 0.8784 |
| 0.0006 | 5.0 | 470 | 0.2425 | 0.9938 | 0.8333 | 1.0 | 0.9091 | 0.8784 |
| 0.1509 | 6.0 | 564 | 0.2001 | 0.9938 | 0.8333 | 1.0 | 0.9091 | 0.8784 |
| 0.0007 | 7.0 | 658 | 0.2096 | 0.9938 | 0.8333 | 1.0 | 0.9091 | 0.8784 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 7
Model tree for buelfhood/progpedia19_codeberta_ep30_bs16_lr2e-05_l512_s42_ppn_loss
Base model
huggingface/CodeBERTa-small-v1