Dataset Viewer
Auto-converted to Parquet Duplicate
id
string
sequence
string
label
int64
source
string
sequence_length
int64
harvey_000001
QVQLVESGGGLVQAGGSLRLSCAASGFTFVYYVMGWYRQAPGKERELVAAINAGGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARVRVRWSSYYYWGQGTQVTVSS
1
harvey2022
120
harvey_000002
QVQLVESGGGLVQAGGSLRLSCAASGLTFHRYAMGWYRQAPGKERELVAAINYSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAPRASGYYWGQGTQVTVSS
1
harvey2022
116
harvey_000003
QVQLVESGGGLVQAGGSLRLSCAASGFTFHNNVMGWYRQAPGKERELVATISKSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCARRYRDYGRYGYWGQGTQVTVSS
1
harvey2022
119
harvey_000004
QVQLVESGGGLVQAGGSLRLSCAASGRIFVGYAMGWYRQAPGKERELVAAINRSGSSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARSGNRGPRYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000005
QVQLVESGGGLVQAGGSLRLSCAASGRTFASNAMGWYRQAPGKERELVAAISSSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAKVGPVYKYDYWGQGTQVTVSS
1
harvey2022
118
harvey_000006
QVQLVESGGGLVQAGGSLRLSCAASGRTLARNAMGWYRQAPGKERELVASINGRTTRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAADPPGYYGKRYYWGQGTQVTVSS
1
harvey2022
120
harvey_000007
QVLLQESGGGLVQAGGSLRLSCAASGSIFLFYTMGWYRQAPVKEREFVAGITLGTTTYNADSVKGRFTISRDNVKNTVYLQMNSLKPEDTAVYYCAVAVGHYTEFWYWGQGTQVTMSS
1
harvey2022
118
harvey_000008
QVQLVESGGGLVQAGGSLRLSCAASGSIFTRNAMGWYRQAPGKEREFVAAISSSGVSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARWGTKSGRYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000009
QVQLQESGGGLVQAGGTLRLSCAASGSFSADEDMGWYRQAQGKEREFVAGISVGGNTNYADSVKGRFTISRENAKNTVYLQINSLKPEDTAVYYCAVLQDVYDALDYWAQGTQVTVSS
1
harvey2022
118
harvey_000010
QVQLVESGGGLVQAGGSLRLSCAASGSIFDVNAMGWYRQAPGKERELVAAISQRGTRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNRGGWRQYDSWGQGTQVTVSS
1
harvey2022
117
harvey_000011
QVQLVESGGGLVQAGGSLRLSCAASGSTLVTNAMGWYRQAPGKERELVAAITFSGGTTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAEIWLEYVGYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000012
QVQLVESGGGLVQAGGSLRLSCAASGFIFAYNAMGWYRQAPGKERELVAAISWSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNKYIRYPFKRYGYWGQGTQVTVSS
1
harvey2022
120
harvey_000013
QVQLVESGGGLVQAGGSLRLSCAASGRTFVYYAMGWYRQAPGKEREFVAAISRSGGRTSYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAEKRTQTSREYYWGQGTQVTVSS
1
harvey2022
120
harvey_000014
QVQLVESGGGLVQAGGSLRLSCAASGSTFHNYAMGWYRQAPGKERELVAGISVRGGGTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAKRSRYYYRYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000015
QVQLVESGGGLVQAGGSLRLSCAASGRTFRRYVMGWYRQAPGKERELVAAISYSGATTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAATAPGDRYYWGQGTQVTVSS
1
harvey2022
117
harvey_000016
QVQLVESGGGLVQAGGSLRLSCAASGSTFGGYAMGWYRQAPGKERELVAAISGSGVRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAKRVRYPGDRYYYWGQGTQVTVSS
1
harvey2022
120
harvey_000017
QVQLQESGGGLVQAGGSMRLSCAASGSISELRPMGWYRQAPGKERELVAGISTGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAASYGEGTYDYWGQGTQVTVRS
1
harvey2022
118
harvey_000018
QVQLVESGGGLVQAGGSLRLSCAASGFIFERYTMGWYRQAPGKERELVAAISDSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAKFRNYPSKYYYWGQGTQVTVSS
1
harvey2022
120
harvey_000019
QVQLVESGGGLVQAGGSLRLSCAASGRTFANYAMGWYRQAPGKERELVAAISFSTVSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARRLGYVKELDYWGQGTQVTVSS
1
harvey2022
120
harvey_000020
QVQLQESGGCLVLAGGSLRLSCAASGYIFDTCPMGWYRQAPGKEREFVASIDHGSNTYYADSVKGRFTISRDSAKNTVYLQMNSLKPEDTAVYYCAVRDDGSYTYGNWGQGTQVTVSS
1
harvey2022
118
harvey_000021
QVQLVESGGGLVQAGGSLRLSCAASGSTFSGYAMGWYRQAPGKERELVAAISRRGTSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARPSGYIGGYGYWGQGTQVTVSS
1
harvey2022
120
harvey_000022
QVQLVESGGGLVQAGGSLRLSCAASGRIFSRYAMGWYRQAPGKERELVAGITRSGTTTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAPPIRPNLYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000023
QVQLVESGGGLVQAGGSLRLSCAASGRIVKYAMGWYRQAPGKERELVAAISGSGGTTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAASRPRPSRRMDYWGQGTQVTVSS
1
harvey2022
119
harvey_000024
QVQLVESGGGLVQAGGSLRLSCAASGLILDGYAMGWYRQAPGKERELVAAITRSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAALGWSGRYRYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000025
QVQLVESGGGLVQAGGSLRLSCAASGRTFFYNAMGWYRQAPGKERELVAAISSGGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAASYRQPGYGYWGQGTQVTVSS
1
harvey2022
119
harvey_000026
QVQLVESGGGLVQAGGSLRLSCAASGFTFYTYAMGWYRQAPGKERELVAAITGSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAALYVYRRTPYGYWGQGTQVTVSS
1
harvey2022
120
harvey_000027
QVQLVESGGGLVQAGGSLRLSCAASGSIFPYYAMGWYRQAPGKERELVATITSRGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAKEYRYYRRRYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000028
QVQLQESGSGLVQAGGSLRLSCAASGNISHYNDMGWYRQAPGKEREPVATINSGSITYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVKQHGYFYLDYWGQGTQVTVSS
1
harvey2022
118
harvey_000029
QVQLVESGGGLVQAGGSLRLSCAASGRIFGYNGMGWYRQAPGKERELVAAITSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAYFYQRVGPYGYWGQGTQVTVSS
1
harvey2022
119
harvey_000030
QVQLVESGGGLVQAGGSLRLSCAASGSIFKYYAMGWYRQAPGKERELVAAITWSGTRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNAPRYLYAGRFNYWGQGTQVTVSS
1
harvey2022
120
harvey_000031
QVQLVESGGGLVQAGGSLRLSCAASGRIFSSYTMGWYRQAPGKERELVATITLRGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAATYLTYYHRFNYWGQGTQVTVSS
1
harvey2022
120
harvey_000032
QVQLQESGGGLVQGGGSLRLSCAASGSIYRSWYMGWYRQAPGKERELVASITEGATTNYAYSVKAALPLAAITRNTVYLQMDSMKPEDTAVYYRAASFGSTYDLVYWGQGTQVTVSS
1
harvey2022
117
harvey_000033
QVLLQESGGLVQAGCSLRMSCAASGSISTALSMGWYRQAPGKERELVATISDGASTNYADSVKGRFTISRVNAKNTVYLQMNSLKPEDTEVYYCAAQSQYRPDHRYWGQGTQVTVSS
1
harvey2022
117
harvey_000034
QVQLVESGGGLVQAGGSLRLSCAASGFTFATYAMGWYRQAPGKKGRLVAAISNAGSTKYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAASTLYAYYLYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000035
QVQLVESGGGLVQAGGSLRLSCAASGSTFGINAMGWYRQAPGKERELVASITRRGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNKTYRYGTPLYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000036
QVQLVESGGGLVQAGGSLRLSCAASGSIFNGYAMGWYRQAPGKERELVAAISWNGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNKVSGYDVDYWGQGTQVTVSS
1
harvey2022
117
harvey_000037
QVQLVESGGGLVQAGGSLRLSCAASGRIFGRNAMGWYRQAPGKERELVAAISSSGGTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARVRTQQRWVDYWGQGTQVTVSS
1
harvey2022
119
harvey_000038
QVQLVESGGGLVQAGGSLRLSCAASGRIFGQNAMGWYRQAPGKERELVAVISQSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAKGGYQHYWGQGTQVTVSS
1
harvey2022
115
harvey_000039
QVQLVESGGGLVQAGGSLRLSCAASGSIFGRYVMGWYRQAPGKERELVARITQSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAATSWWWLYYWGQGTQVTVSS
1
harvey2022
118
harvey_000040
QVQLVESGGGLVQAGGSLRLSCAASGRIFSRNAMGWYRQAPGKERELVAGISARGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARTGYQTYGNDYWGQGTQVTVSS
1
harvey2022
120
harvey_000041
QVQLVESGGGLVQAGGSLRLSCAASGSTFAPNAMGWYRQAPGKERELVAAIRTNTGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAVFSGFYYAYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000042
QVQLVESGGGLVQAGGSLRLSCAASGRIFKRYDMGWYRQAPGKERELVAAITGTGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARLYNTGFAFGYWGQGTQVTVSS
1
harvey2022
120
harvey_000043
QVQLVESGGGLVQAGGSLRLSCAASGFIIDANTMGWYRQAPGKERELVAAINESGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAADPTWDYPYYYYWGQGTQVTVSS
1
harvey2022
120
harvey_000044
QVQLVESGGGLVQAGGSLRLSCAASGNTFGNYGMGWYRQAPGKEREFVAAITSRGTSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARPRYKYPRYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000045
QVQLVESGGGLVQAGGSLRLSCAASGSIFTPNAMGWYRQAPGKERELVAAISSSSDRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAYAQKRYYWGQGTQVTVSS
1
harvey2022
116
harvey_000046
QVQLQESGGGLVQASGSIFHEPNMGWHRQAPGKERELVATISDGAITNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVVVHLYTDLRYWGQDTQVTVSS
1
harvey2022
108
harvey_000047
QVQLQESGGGLVQAGGCLRLSCAASGTIFDPDYMGWYHQAPGKERELVASISLGRITYYADSVKGRFTINRDNAKNTVYLQMNSLKPEDTAVYYCAVRVETIYYYSYWGQGTQVTVSS
1
harvey2022
118
harvey_000048
QVQLVESGGGLVQAGGSLRLSCAASGSTFIVYAMGWYRQAPGKERELVAAIRGRGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARGISPQEMYYWGQGTQVTVSS
1
harvey2022
119
harvey_000049
QVQLVESGGGLVQAGGSLRLSCAASGNIFDLYAMGWYRQAPGKERELVAAITRSSSRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCRAKQVNRFDYWGQGTQVTVSS
1
harvey2022
117
harvey_000050
QVQLVESGGGLVQAGGSLRLSCAASGRIFYYNTMGWYRQAPGKERELVARITYSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNAKPRYYQTGGGYWGQGTQVTVSS
1
harvey2022
120
harvey_000051
QVQLVESGGGLVQAGGSLRLSCAASGLTFRYYAMGWYRQAPGKERELVAAISSRGASTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVRTYVYSLPYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000052
QVQLVESGGGLVQAGGSLRLSCAASGSTFSLYAMGWYRQAPGKERELVADINSGGGTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCTAASSWSYFWYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000053
QVQLVESGGGLVQAGGSLRLSCAASGRIFVVNAMGWYRQAPGKERELVAAITRRGGSTYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNAESYYGRYKYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000054
QVQLVESGGGLVQAGGSLRLSCAASGSTFVRYVMGWYRQAPGKERELVAAISRRGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCARTVGYRLLESDSWGQGTQVTVSS
1
harvey2022
120
harvey_000055
QVQLVESGGGLVQAGGSLRLSCAASGSTFSSNVMGWYRQAPGKERELVAAITGSGSRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNTKGRSRTYGYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000056
QVQLVESGGGLVQAGGSLRLSCAASGLIFRTYTMGWYRQAPGKERELVATITRRGGTTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAKSPYYTWKYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000057
QVQLVESGGGLVQAGGSLRLSCAASGRIFVRNAMGWYRQAPGKEREFVAAISRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAADYPKTTSKFNYWGQGTQVTVSS
1
harvey2022
120
harvey_000058
QVQLVESGGGLVQAGGSLRLSCAASGFIFDYNVMGWYRQAPGKKGSWVAAISWSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARGTSTTGRYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000059
QVQLVESGGGLVQAGGSLRLSCAASGFTFSRNTMGWYRQAPGKERELVARISASGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAVYRRYGSRYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000060
QVQLVESGGGLVQAGGSLRLSCAASGSIFEPNAMGWYRQAPGKEREFVAAISGSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCATRGKRSFRTFYYWGQGTQVTVSS
1
harvey2022
120
harvey_000061
QVQLVESGGGLVQAGGSLRLSCAASGRTLTRYTMGWYRQAPGKERELVATISRSGGNTHYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNAVRYAIYGYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000062
QVQLVESGGGLVQAGGSLRLSCAASGFTFSWYAMGWYRQAPGKERELVAAISSAGNTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAKRDYWGQGTQVTVSS
1
harvey2022
111
harvey_000063
QVQLVESGGGLVQAGGSLRLSCAASGFTFPLYAMGWYRQAPGKERELVAVISRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARLVPRRGNYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000064
QVQLVESGGGLVQAGGSLRLSCAASGFTFPFYTMGWYRQAPGKERELVAAITRSGASTFYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARRGYAPYEYWGQGTQVTVSS
1
harvey2022
118
harvey_000065
QEQLQESGGGQVQAGGSLLLSCAASGNIIRYYYMGWYRQAPGKERELVAAITYGTSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVDVNYGDPLDNWGQGTQVTVSS
1
harvey2022
118
harvey_000066
QVQLVESGGGLVQAGGSLRLSCAASGSIFSKYVMGWYRQAPGKERELVAAISWSGTRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARRLYAGHQYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000067
QVQLVESGGGLVQAGGSLRLSCAASGSIFHGYAMGWYRQAPGKERELVAAITYSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAALTRRVKKYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000068
QVQLVESGGGLVQAGGSLRLSCAASGSIFKWNAMGWYRQAPGKERELVASITRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCARSYGWYWAGYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000069
QVQLVESGGGLVQAGGSLRLSCAASGFIFTLYAMGWYRQAPGKERELVASIRGSGGNTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARTYRRPYYSWGQGTQVTVSS
1
harvey2022
118
harvey_000070
QVQLVESGGGLVQAGGSLRLSCAASGFTFTAYAMGWYRQAPGKERELVAAINWSGSRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNTATSKSYRHYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000071
QVQLVESGGGLVQAGGSLRLSCAASGRTFTKYAMGWYRQAPGKERELVAAISRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARGQYRSFGDYSWGQGTQVTVSS
1
harvey2022
120
harvey_000072
QVQLVESGGGLVQAGGSLRLSCAASGRIFGSYAMGWYRQAPGKERELVAAITRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAYFRFSSAKFGYWGQGTQVTVSS
1
harvey2022
120
harvey_000073
QVQLVESGGGLVQAGGSLRLSCAASGFTFAVYVMGWYRQAPGKERELVAAISRSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARVWAKYDYWGQGTQVTVSS
1
harvey2022
117
harvey_000074
QVQLQESGGGLVQAGGSLRLSCAASGYISQSSVMGWYRQAPGKEREFVASISYGATTYYADSVKGRFTISRDNAKNTVYLQTNSPKPEDTAVYYCAVWVKRGFSHRYWGQGTQVTVSS
1
harvey2022
118
harvey_000075
QVQLVESGGGLVQAGGSLRLSCAASGFTFQYYAMGWYRQAPGKERELVAAINWSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAATRSFSYVSYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000076
QVQLVESGGGLVQAGGSLRLSCAASGFIFAQNAMGWYRQAPGKERELVAAISGSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAQYFSGYWGQGTQVTVSS
1
harvey2022
115
harvey_000077
QVQLVESGGGLVQAGGSLRLSCAASGLTFSSYAMGWYRQAPGKERELVAVISRTGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARSYNGWRYDSWGQGTQVTVSS
1
harvey2022
119
harvey_000078
QVQLVESGGGLVQAGGSLRLSCAASGITFVRYAMGWYRQAPGKERELVAVISRGGITNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVRGRSYVRTYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000079
QVQLVESGGGLVQAGGSLRLSCAASGSTFYWYTMGWYRQAPGKERELVARISSSGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNKDWIYRGYDYWGQGTQVTVSS
1
harvey2022
117
harvey_000080
QVQLVESGGGLVQAGGSLRLSCAASGRTFRGNAMGWYRQAPGKERELVAAISWSGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAGVPKNQAGYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000081
QVQLQESGGGQVQAGGSLRLSCAASGYISTHYFMGWYRQAPGKDREFVAGISNGSITNYADSVKGRFTISRDNARNTVYLQMNSLKPEDTAVYYGAAYEWTYVRFGYWGQGTQVTVSG
1
harvey2022
118
harvey_000082
QVQLVESGGGLVQAGGSLRLSCAASGFTLPVYAMGWYRQAPGKERELVARITWSAGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAGPVSQPGPHDYWGQGTQVTVSS
1
harvey2022
120
harvey_000083
QVQLVESGGGLVQAGGSLRLSCAASGRTSVIYAMGWYRQAPGKERELVASIRRGGSTSYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARKRSVGTEYDYWGQGTQVTVSS
1
harvey2022
119
harvey_000084
QVQLVESGGGLVQAGGSLRLSCAASGRIFSRNAMGWYRQAPGKERELVAAITWRGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNRDYRQYYSGRYYWGQGTQVTVSS
1
harvey2022
120
harvey_000085
QVQLQESGGGLVQAGGSLRLSCAATGTIFTDRFMGWYRQAPGKERELVAGISPGTSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAADWSTGNTLPYWGQGTQVTVSS
1
harvey2022
118
harvey_000086
QVQLVESGGGLVQAGGSLRLSCAASGIIFGRYAMGWYRQAPGKERELVAAITSGGSTSYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVVFVWGWPGYYWGQGTQVTVSS
1
harvey2022
118
harvey_000087
QVQLVESGGGLVQAGGSLRLSCAASGSIFEVNAMGWYRQAPGKERELVAAISFSGDSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAEQYVADYLYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000088
QVQLVESGGGLVQAGGSLRLSCAASGRIFALYAMGWYRQAPGKERELVAAITWRGGRTRYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAKEYVKYQWDYGYWGQGTQVTVSS
1
harvey2022
120
harvey_000089
QVQLVESGGGLVQAGGSLRLSCAASGLTFFRNAMGWYRQAPGKEREFVAGITSTDGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAAYRVRGRTYDSWGQGTQVTVSS
1
harvey2022
120
harvey_000090
QVQLVESGGGLVQAGGSLRLSCAASGFIFYRYAMGWYRQAPGKERELVAAITGSGARTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARGYRGYDYWGQGTQVTVSS
1
harvey2022
117
harvey_000091
QVQLVESGGGLVQAGGSLRLSCAASGSTFVGYAMGWYRQAPGKERELVAAITSRGGRTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNAKRPRIVTRYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000092
QVQLVESGGGLVQAGGSLRLSCAASGIIFWGYAMGWYRQAPGKERELVAAISRGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAATGVRTWALDYWGQGTQVTVSS
1
harvey2022
118
harvey_000093
QVQLVESGGGLVQAGGSLRLSCAASGSTFYGYVMGWYRQAPGKERELVAGITRGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCATRYFSRYYYWGQGTQVTVSS
1
harvey2022
116
harvey_000094
QVQLVESGGGLVQAGGSLRLSCAASGSIFYWNTMGWYRQAPGKERELVAAISYSGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAKYYNRFYYWGQGTQVTVSS
1
harvey2022
117
harvey_000095
QVQLVESGGGLVQAGGSLRLSCAASGSTFAGNAMGWYRQAPGKERELVAGITSSGARTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNKYHFSPYDYWGQGTQVTVSS
1
harvey2022
117
harvey_000096
QVQLVESGGGLVQAGGSLRLSCAASGRTFGVYVMGWYRQAPGKERELVAVITISGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARTYYGYDYWGQGTQVTVSS
1
harvey2022
117
harvey_000097
QVQLVESGGGLVQAGGSLRLSCAASGIIFRLYAMGWYRQAPGKERELVAAISYRGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAARNPRYSFYYWGQGTQVTVSS
1
harvey2022
118
harvey_000098
QVQLQESGGGLVQAGGSLRLSCAASGYISFSGYMGRYRQAPGKEREFVDSITPGRSTYYADSVKGRFTISRDNAENTVYLQMNSLKPEDTAVYYCAADDSRTEQHAYWGQGTQVTVSS
1
harvey2022
118
harvey_000099
QVQLVESGGGLVQAGGSLRLSCAASGFIFGYNAMGWYRQAPGKERELVAAITWIGGTTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCARQRSYGSYGYDYWGQGTQVTVSS
1
harvey2022
120
harvey_000100
QVQLVESGGGLVQAGGSLRLSCAASGSTFYVNAMGWYRQAPGKERELVAAISWTDDSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAEQYRYYEVEYWGQGTQVTVSS
1
harvey2022
119
End of preview. Expand in Data Studio

Harvey Nanobody Polyreactivity Dataset (Novo Nordisk Preprocessing)

Dataset Summary

This dataset contains 141,021 nanobody (VHH) sequences with binary polyreactivity labels, preprocessed according to the methodology described in Sakhnini et al. 2025 (Novo Nordisk & University of Cambridge). The dataset was originally published by Harvey et al. 2022 and contains synthetic nanobodies assessed by PSR (Poly-Specificity Reagent) assay via FACS sorting and deep sequencing.

This is the preprocessed version used as a test set for evaluating the ESM-1v + Logistic Regression model trained on the Boughter dataset.

Key Features

  • Organism: Synthetic camelid (nanobody) library (yeast display)
  • Molecule Type: Nanobody / Single-domain antibody (VHH)
  • Assay: PSR (Poly-Specificity Reagent) from Sf9 insect cell membranes
  • Method: FACS sorting + Deep sequencing
  • Labels: Binary classification (0 = low polyreactivity, 1 = high polyreactivity)
  • Annotation: ANARCI with IMGT numbering scheme
  • Balance: Well-balanced (49.1% low, 50.9% high polyreactivity)
  • Scale: Large-scale dataset (141K sequences)

Supported Tasks and Leaderboards

  • Binary Classification: Predicting nanobody polyreactivity from sequence
  • Cross-Domain Validation: Testing conventional antibody-trained models on nanobodies
  • Benchmark: Sakhnini et al. 2025 Fig. S14E (61.7% accuracy)

Languages

Protein sequences (amino acid alphabet)

Dataset Structure

Data Instances

{
  "id": "harvey_000001",
  "sequence": "QVQLVESGGGLVQAGGSLRLSCAASGFTFVYYVMGWYRQAPGKERELVAAINAGGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARVRVRWSSYYYWGQGTQVTVSS",
  "label": 1,
  "source": "harvey2022",
  "sequence_length": 120
}

Data Fields

Field Type Description
id string Unique identifier (harvey_XXXXXX format)
sequence string Nanobody VHH amino acid sequence (gap-free; ANARCI/IMGT-validated)
label int Binary label: 0 = low polyreactivity, 1 = high polyreactivity
source string Data source identifier (harvey2022)
sequence_length int Length of the VHH sequence in amino acids

Data Splits

Split Examples Label 0 (Low) Label 1 (High)
test 141,021 69,262 (49.1%) 71,759 (50.9%)

Note: This dataset is used exclusively as a test set for models trained on the Boughter dataset. The entire dataset is the "test" split.

Dataset Creation

Curation Rationale

This dataset was created to evaluate whether models trained on conventional antibody polyreactivity data (Boughter - ELISA) can generalize to:

  1. Different molecule types: Nanobodies (VHH) vs conventional antibodies (VH)
  2. Different assays: PSR assay vs ELISA assay

Source Data

Original Data Collection

From Harvey et al. 2022:

  • Started with >2 × 10⁹ synthetic yeast display nanobody library
  • MACS enrichment for polyreactive clones
  • FACS sorting with PSR (polyspecificity reagent from Sf9 insect cell membranes)
  • Deep sequencing of high and low polyreactivity pools

Original Files (from debbiemarkslab/nanobody-polyreactivity):

  • high_polyreactivity_high_throughput.csv: 71,772 sequences
  • low_polyreactivity_high_throughput.csv: 69,702 sequences
  • Total: 141,474 sequences

Preprocessing Pipeline (Novo Nordisk Methodology)

IMPORTANT: Sakhnini et al. (2025) describe using the unfiltered Harvey dataset (>140,000 nanobodies), not the CDR-length-filtered subset (~134K) used in Harvey et al.'s published one-hot predictor. This export starts from the full official repository release (141,474 sequences).

Stage Description Sequences
1. Raw Data Combine high and low polyreactivity CSVs 141,474
2. ANARCI Annotation Annotate using ANARCI with IMGT numbering 141,474 → 141,021 (99.68%)
3. Gap Removal Use sequence_aa not sequence_alignment_aa (no change)

ANARCI Failures: 453 sequences (0.32%) failed annotation and were excluded.

CDR Length Filtering

Harvey et al.'s published predictor uses a CDR length filter:

  • CDR1==8, CDR2==8 or 9, CDR3==6-22 → 134,302 sequences

Sakhnini et al. (2025) describe using ">140 000 naïve nanobodies" and do not mention applying this filter. Accordingly, this export does not apply it:

  • No CDR-length filter → 141,474 raw sequences → 141,021 after ANARCI

Evidence: Sakhnini et al. (2025) Section 4.1 ("Data sources") describes the Harvey dataset as ">140 000 naïve nanobodies", consistent with using the unfiltered data.

Novo Nordisk Methodology Verification

This dataset's preprocessing was cross-referenced against Sakhnini et al. (2025) Section 4.1:

Metric Novo Paper (Section 4.1) This Dataset Status
Dataset Size ">140,000 naïve nanobodies" 141,021 sequences ✅ MATCH
Annotation Method "ANARCI following the IMGT numbering scheme" ANARCI/IMGT ✅ MATCH
Source Harvey et al. 2022 debbiemarkslab/nanobody-polyreactivity ✅ MATCH
ANARCI Failures Not explicitly stated 453 (0.32%) Documented

Verification Notes:

  • The paper states ">140,000" which is consistent with our 141,021 post-ANARCI count
  • Labels are directly from the original Harvey et al. 2022 FACS sorting (high/low PSR pools)
  • No additional filtering was applied beyond ANARCI annotation
  • Note: Sakhnini et al. Fig. S14E confusion matrix totals 141,559 nanobodies, suggesting their preprocessing snapshot may differ slightly from the official upstream data used here (141,474 raw → 141,021 ANARCI-validated)

Annotations

Annotation Process

  1. ANARCI Annotation: IMGT numbering scheme applied to identify VHH domain boundaries
  2. Gap Character Handling: Use sequence_aa (gap-free) instead of sequence_alignment_aa
  3. Label Assignment: Binary labels from original FACS sorting (high vs low PSR pools)

Who are the annotators?

  • Original FACS/Sequencing: Harvey et al. 2022 (Debbie Marks Lab, Harvard)
  • Preprocessing pipeline: Based on Sakhnini et al. 2025 (Novo Nordisk & University of Cambridge)
  • This preprocessing: The-Obstacle-Is-The-Way (Hugging Science)

Personal and Sensitive Information

This dataset contains synthetic nanobody sequences from a yeast display library. No human sequences or personal information is included.

Considerations for Using the Data

Social Impact of Dataset

This dataset enables:

  • Development of polyreactivity prediction tools for nanobodies
  • Cross-domain validation of antibody developability models
  • In-silico screening to reduce experimental burden

Discussion of Biases

  1. Synthetic Library Bias: All sequences are from a synthetic yeast display library, not natural immune repertoires
  2. Assay Bias: PSR assay may capture different aspects of non-specificity than ELISA
  3. Selection Pressure: FACS sorting may introduce biases based on expression level
  4. Nanobody-Specific: Results may not generalize to conventional antibodies

Other Known Limitations

  1. VHH Only: This dataset contains single-domain antibodies (no light chain)
  2. Binary Labels: Quantitative PSR scores are not included (only binary high/low)
  3. Cross-Assay Transfer: Models trained on ELISA data (Boughter) may not optimally transfer to PSR data

Recommended Usage

When evaluating models trained on ELISA data (Boughter):

# For reproducing Sakhnini et al. (2025) Fig. S14E, binarize model probabilities with:
THRESHOLD = 0.5495  # decision threshold on predicted P(non-specific)
predictions = (model_probabilities >= THRESHOLD).astype(int)

Note on Inference Threshold (0.5495)

IMPORTANT: The 0.5495 threshold is for model inference/evaluation only, NOT preprocessing.

  • What it is: A decision threshold for binarizing model prediction probabilities during evaluation
  • What it is NOT: A preprocessing parameter - the data (sequences, labels) is unaffected
  • Why it exists: Empirically determined to better reproduce Sakhnini et al. (2025) Fig. S14E results when evaluating ELISA-trained models on PSR test data
  • Not in the paper: This threshold value is not described in Sakhnini et al. (2025); it is derived via threshold sweep in this repository for parity against reported results
  • Standard threshold: 0.5 (binary classification default)
  • PSR-calibrated threshold: 0.5495 (determined via threshold sweep to match Novo's reported accuracy)

This threshold adjustment compensates for the cross-assay domain shift between ELISA (training) and PSR (testing) data.

Additional Information

Dataset Curators

  • Original Dataset: Emily P. Harvey, Debbie Marks Lab (Harvard Medical School)
  • Preprocessing Methodology: Laila I. Sakhnini, Daniele Granata et al. (Novo Nordisk)
  • This Preprocessing: The-Obstacle-Is-The-Way (Hugging Science)

Licensing Information

Harvey et al. (2022) is published under CC-BY-4.0 (per the DOI landing page). The raw source files in this repository were copied from debbiemarkslab/nanobody-polyreactivity (repository license: MIT). This Hugging Face export is distributed under the MIT license; please retain upstream attribution/citations (paper + repository).

Citation Information

If you use this dataset, please cite the original paper, the Novo Nordisk methodology paper, and ANARCI (used for IMGT numbering):

@article{harvey2022in_silico,
  title={An in silico method to assess antibody fragment polyreactivity},
  author={Harvey, Edward P. and Shin, Jung-Eun and Skiba, Meredith A. and Nemeth, Genevieve R. and Hurley, Joseph D. and Wellner, Alon and Shaw, Ada Y. and Miranda, Victor G. and Min, Joseph K. and Liu, Chang C. and Marks, Debora S. and Kruse, Andrew C.},
  journal={Nature Communications},
  volume={13},
  number={1},
  pages={7554},
  year={2022},
  publisher={Springer Science and Business Media LLC},
  doi={10.1038/s41467-022-35276-4}
}

@article{sakhnini2025prediction,
  title={Prediction of Antibody Non-Specificity using Protein Language Models and Biophysical Parameters},
  author={Sakhnini, Laila I. and Beltrame, Ludovica and Fulle, Simone and Sormanni, Pietro and Henriksen, Anette and Lorenzen, Nikolai and Vendruscolo, Michele and Granata, Daniele},
  journal={bioRxiv},
  year={2025},
  month={May},
  publisher={Cold Spring Harbor Laboratory},
  doi={10.1101/2025.04.28.650927},
  url={https://www.biorxiv.org/content/10.1101/2025.04.28.650927v1}
}

@article{dunbar2016anarci,
  title={ANARCI: antigen receptor numbering and receptor classification},
  author={Dunbar, James and Deane, Charlotte M},
  journal={Bioinformatics},
  volume={32},
  number={2},
  pages={298--300},
  year={2016},
  doi={10.1093/bioinformatics/btv552}
}

Contributions

Thanks to the Harvey lab and Debbie Marks lab for making the original data publicly available, and to Novo Nordisk for publishing their preprocessing methodology.


Version: 1.0.0 Last Updated: 2025-12-14 Maintainer: Hugging Science Organization

Downloads last month
17