SparseCraft: Few-Shot Neural Reconstruction through Stereopsis Guided Geometric Linearization
Paper
•
2407.14257
•
Published
•
5
psnr
float64 10.8
30.9
| average_vgg
float64 0.04
0.28
| lpips_alex
float64 0.04
0.34
| masked_lpips_vgg
float64 0.02
0.29
| ssim
float64 0.49
0.94
| masked_psnr
float64 12.1
29.7
| masked_ssim
float64 0.58
0.97
| masked_average_vgg
float64 0.02
0.21
| lpips_vgg
float64 0.11
0.38
| masked_average_alex
float64 0.01
0.2
| average_alex
float64 0.03
0.27
| masked_lpips_alex
float64 0.01
0.21
|
|---|---|---|---|---|---|---|---|---|---|---|---|
15.612605
| 0.182912
| 0.250766
| 0.110639
| 0.647386
| 19.720907
| 0.844382
| 0.091308
| 0.349011
| 0.083099
| 0.164105
| 0.079593
|
23.136719
| 0.089039
| 0.237383
| 0.116084
| 0.827529
| 21.450104
| 0.906795
| 0.065839
| 0.328666
| 0.067094
| 0.079956
| 0.123028
|
26.953545
| 0.061328
| 0.147889
| 0.064454
| 0.855635
| 25.483364
| 0.906916
| 0.041913
| 0.246764
| 0.037565
| 0.051993
| 0.045019
|
13.42104
| 0.232605
| 0.281022
| 0.292008
| 0.485001
| 14.469901
| 0.577335
| 0.189938
| 0.381917
| 0.170937
| 0.209752
| 0.213411
|
20.332878
| 0.090468
| 0.114014
| 0.030439
| 0.888065
| 23.640903
| 0.956012
| 0.031614
| 0.178288
| 0.027801
| 0.078152
| 0.020702
|
15.832437
| 0.156163
| 0.171201
| 0.147175
| 0.695472
| 17.465902
| 0.76982
| 0.110531
| 0.245631
| 0.096954
| 0.138636
| 0.099359
|
17.168257
| 0.133136
| 0.162101
| 0.101384
| 0.751055
| 23.259663
| 0.831322
| 0.059638
| 0.227315
| 0.050964
| 0.119059
| 0.063112
|
16.05372
| 0.155693
| 0.164555
| 0.18322
| 0.684855
| 18.277168
| 0.755703
| 0.112182
| 0.253515
| 0.096716
| 0.134952
| 0.117107
|
14.607919
| 0.177269
| 0.224431
| 0.148699
| 0.663664
| 18.956442
| 0.763475
| 0.100532
| 0.248887
| 0.096491
| 0.171504
| 0.130384
|
17.286722
| 0.124715
| 0.146373
| 0.1074
| 0.778992
| 22.024189
| 0.84892
| 0.0672
| 0.207764
| 0.060776
| 0.111043
| 0.078853
|
10.782827
| 0.282848
| 0.34057
| 0.222224
| 0.527205
| 12.067881
| 0.673081
| 0.207727
| 0.376662
| 0.199453
| 0.273651
| 0.196358
|
26.00028
| 0.072439
| 0.182626
| 0.046619
| 0.778757
| 26.335566
| 0.931163
| 0.034106
| 0.282038
| 0.031497
| 0.062867
| 0.035525
|
20.721743
| 0.080817
| 0.100333
| 0.034019
| 0.887107
| 22.658798
| 0.941635
| 0.036364
| 0.162234
| 0.033724
| 0.068766
| 0.026959
|
19.087677
| 0.105109
| 0.119125
| 0.094617
| 0.786322
| 22.366161
| 0.847124
| 0.063304
| 0.18924
| 0.055618
| 0.090138
| 0.062936
|
18.605896
| 0.106482
| 0.158349
| 0.041696
| 0.854243
| 20.099861
| 0.929528
| 0.049473
| 0.197407
| 0.046761
| 0.098808
| 0.035428
|
21.054716
| 0.09939
| 0.140906
| 0.060436
| 0.785014
| 27.103441
| 0.915542
| 0.033921
| 0.249205
| 0.026554
| 0.082291
| 0.028559
|
25.612026
| 0.063554
| 0.148581
| 0.064783
| 0.869743
| 23.89645
| 0.935976
| 0.043517
| 0.2346
| 0.044266
| 0.054655
| 0.067813
|
27.471127
| 0.053152
| 0.103209
| 0.053083
| 0.864302
| 26.920633
| 0.9171
| 0.035283
| 0.190299
| 0.031339
| 0.043577
| 0.03537
|
16.743391
| 0.144037
| 0.158867
| 0.171084
| 0.677456
| 17.66081
| 0.731082
| 0.118028
| 0.231358
| 0.104542
| 0.12749
| 0.118222
|
25.522343
| 0.046451
| 0.05167
| 0.027167
| 0.929437
| 26.165056
| 0.960814
| 0.02588
| 0.134786
| 0.021705
| 0.034399
| 0.0159
|
17.752598
| 0.115163
| 0.115291
| 0.097736
| 0.77778
| 21.171738
| 0.83991
| 0.06976
| 0.180864
| 0.059167
| 0.099873
| 0.059163
|
22.086767
| 0.077259
| 0.093023
| 0.083733
| 0.845673
| 24.96306
| 0.879685
| 0.047236
| 0.167984
| 0.040218
| 0.064136
| 0.051194
|
18.210844
| 0.118349
| 0.127605
| 0.139301
| 0.761475
| 19.401304
| 0.808443
| 0.093361
| 0.198977
| 0.081856
| 0.102465
| 0.093513
|
17.597433
| 0.118843
| 0.154948
| 0.114638
| 0.790134
| 19.841152
| 0.841538
| 0.081607
| 0.196178
| 0.077975
| 0.110439
| 0.099185
|
23.41309
| 0.063362
| 0.076208
| 0.073158
| 0.869683
| 25.410969
| 0.899182
| 0.045388
| 0.140009
| 0.039713
| 0.052644
| 0.047994
|
16.915365
| 0.117634
| 0.109895
| 0.080209
| 0.804557
| 20.234909
| 0.86625
| 0.068283
| 0.161282
| 0.060208
| 0.105264
| 0.054518
|
29.438812
| 0.050774
| 0.110009
| 0.031058
| 0.837293
| 28.244579
| 0.943626
| 0.026617
| 0.21047
| 0.024296
| 0.041571
| 0.02253
|
25.627495
| 0.045361
| 0.051938
| 0.026855
| 0.924561
| 25.480103
| 0.956219
| 0.026121
| 0.123718
| 0.023517
| 0.034439
| 0.019493
|
22.56492
| 0.071248
| 0.073708
| 0.07185
| 0.837402
| 25.058378
| 0.878737
| 0.048758
| 0.148793
| 0.041458
| 0.057079
| 0.042113
|
25.626848
| 0.045479
| 0.056164
| 0.026323
| 0.928316
| 24.396992
| 0.956843
| 0.028243
| 0.125018
| 0.024645
| 0.034923
| 0.017655
|
26.410034
| 0.060401
| 0.095297
| 0.049022
| 0.846149
| 29.095221
| 0.932106
| 0.026092
| 0.226345
| 0.019701
| 0.045443
| 0.020847
|
29.450077
| 0.039386
| 0.086091
| 0.053405
| 0.920402
| 26.204363
| 0.955126
| 0.030649
| 0.183023
| 0.029983
| 0.030647
| 0.049967
|
30.5319
| 0.03656
| 0.078075
| 0.048557
| 0.906829
| 28.347792
| 0.935646
| 0.027262
| 0.167928
| 0.023551
| 0.028301
| 0.031199
|
18.659431
| 0.110866
| 0.122441
| 0.141959
| 0.743151
| 19.224331
| 0.782055
| 0.092943
| 0.194633
| 0.080352
| 0.09519
| 0.091708
|
25.845377
| 0.046457
| 0.047954
| 0.021472
| 0.940632
| 28.711506
| 0.972658
| 0.017356
| 0.130252
| 0.013222
| 0.033608
| 0.009471
|
21.673559
| 0.073949
| 0.07089
| 0.07521
| 0.843405
| 23.050653
| 0.876575
| 0.051866
| 0.13965
| 0.042564
| 0.059429
| 0.041376
|
24.568323
| 0.054584
| 0.060801
| 0.061452
| 0.891342
| 27.120859
| 0.911278
| 0.033603
| 0.133057
| 0.027695
| 0.042453
| 0.033869
|
21.772087
| 0.073561
| 0.073703
| 0.092905
| 0.847974
| 23.258148
| 0.882287
| 0.054619
| 0.141073
| 0.044463
| 0.059724
| 0.049437
|
20.398712
| 0.089413
| 0.114969
| 0.089242
| 0.838152
| 22.643755
| 0.880764
| 0.056164
| 0.159939
| 0.051098
| 0.080691
| 0.066323
|
25.883759
| 0.044234
| 0.050278
| 0.056916
| 0.9106
| 27.849375
| 0.929649
| 0.029853
| 0.114235
| 0.024807
| 0.033921
| 0.032889
|
21.301495
| 0.068154
| 0.065986
| 0.064017
| 0.875362
| 22.729145
| 0.89857
| 0.048232
| 0.120095
| 0.041211
| 0.05591
| 0.040804
|
30.918505
| 0.037406
| 0.070411
| 0.024552
| 0.878878
| 29.683823
| 0.961235
| 0.01852
| 0.165441
| 0.016265
| 0.02844
| 0.01625
|
25.91861
| 0.043211
| 0.045749
| 0.021703
| 0.938527
| 27.002739
| 0.967375
| 0.020198
| 0.116586
| 0.017476
| 0.031759
| 0.013938
|
25.26935
| 0.051299
| 0.052994
| 0.055248
| 0.881623
| 28.48703
| 0.914924
| 0.029411
| 0.125082
| 0.022747
| 0.038771
| 0.025084
|
26.47788
| 0.040547
| 0.044629
| 0.019798
| 0.938763
| 27.061953
| 0.96517
| 0.020027
| 0.112714
| 0.016492
| 0.029942
| 0.011231
|
We provide preprocessed DTU data and results for the tasks of novel view synthesis and surface reconstruction.
It contains the following directories:
sparsecraft_data
├── nvs # Novel View Synthesis task data and results
│ └── mvs_data
│ ├── scan103
│ ├── ...
│ └── results # Results for training using 3, 6, and 9 views
│ ├── 3v
│ │ ├── scan103
│ │ ├── ...
│ ├── 6v
│ │ ├── scan103
│ │ ├── ...
│ └── 9v
│ ├── scan103
│ ├── ...
└── reconstruction # Surface Reconstruction task data and results
└── mvs_data # Surface reconstruction data uses a different set of scans and views than the novel view synthesis task
├── set0
│ ├── scan105
│ ├── ...
└── set1
├── scan105
├── ...
└── results
├── set0
│ ├── scan105
│ ├── ...
└── set1
├── scan105
Note
The DTU dataset was preprocessed as follows:
scripts that you can run using the following command. Note that you will need to have Colmap installed on your machine: