Dataset Viewer
Auto-converted to Parquet Duplicate
code
stringlengths
533
14.9k
apis
sequencelengths
1
6
extract_api
stringlengths
79
3.33k
package kr.jm.openai.token; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingType; import java.util.ArrayList; import java.util.List; import java.util.regex.Pattern; import java.util.stream.Collectors; public class GptTokenAnalyzer { private final Pattern pattern; private final Encoding encoding; public GptTokenAnalyzer(EncodingType encodingType) { this.encoding = Encodings.newLazyEncodingRegistry().getEncoding(encodingType); this.pattern = Pattern.compile("�|ு|്|்"); } public List<Integer> getTokenIds(String prompt) { return encoding.encodeOrdinary(prompt); } public int getTokenCount(String prompt) { return getTokenIds(prompt).size(); } private List<String> getTokenStrings(List<Integer> tokenIds) { return tokenIds.stream().map(List::of).map(encoding::decode).collect(Collectors.toList()); } public TokenAnalysis analysis(String prompt) { String subPrompt = prompt; List<Integer> tokenIds = getTokenIds(prompt); List<String> readableParts = new ArrayList<>(); List<Integer> partTokenCounts = new ArrayList<>(); List<String> tokenStrings = getTokenStrings(tokenIds); int tempTokenCount = 0; for (String tokenString : tokenStrings) { if (pattern.matcher(tokenString).find() || !subPrompt.contains(tokenString)) { tempTokenCount++; } else { int endIndex = subPrompt.indexOf(tokenString); if (tempTokenCount > 0) { partTokenCounts.add(tempTokenCount); readableParts.add(subPrompt.substring(0, endIndex)); tempTokenCount = 0; } partTokenCounts.add(1); readableParts.add(tokenString); subPrompt = subPrompt.substring(endIndex + tokenString.length()); } } if (tempTokenCount > 0) { partTokenCounts.add(tempTokenCount); readableParts.add(subPrompt); } return new TokenAnalysis(prompt, tokenIds, readableParts, partTokenCounts); } }
[ "com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncoding" ]
[((464, 525), 'com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncoding')]
package dev.langchain4j.model.openai; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.IntArrayList; import dev.langchain4j.agent.tool.ToolExecutionRequest; import dev.langchain4j.agent.tool.ToolParameters; import dev.langchain4j.agent.tool.ToolSpecification; import dev.langchain4j.data.message.*; import dev.langchain4j.model.Tokenizer; import java.util.List; import java.util.Map; import java.util.Optional; import java.util.function.Supplier; import static dev.langchain4j.internal.Exceptions.illegalArgument; import static dev.langchain4j.internal.Json.fromJson; import static dev.langchain4j.internal.Utils.isNullOrBlank; import static dev.langchain4j.internal.ValidationUtils.ensureNotBlank; import static dev.langchain4j.model.openai.OpenAiChatModelName.*; import static java.util.Collections.singletonList; /** * This class can be used to estimate the cost (in tokens) before calling OpenAI or when using streaming. * Magic numbers present in this class were found empirically while testing. * There are integration tests in place that are making sure that the calculations here are very close to that of OpenAI. */ public class OpenAiTokenizer implements Tokenizer { private final String modelName; private final Optional<Encoding> encoding; /** * Creates an instance of the {@code OpenAiTokenizer} for the "gpt-3.5-turbo" model. * It should be suitable for all current OpenAI models, as they all use the same cl100k_base encoding. */ public OpenAiTokenizer() { this(GPT_3_5_TURBO.toString()); } /** * Creates an instance of the {@code OpenAiTokenizer} for a given {@link OpenAiChatModelName}. */ public OpenAiTokenizer(OpenAiChatModelName modelName) { this(modelName.toString()); } /** * Creates an instance of the {@code OpenAiTokenizer} for a given {@link OpenAiEmbeddingModelName}. */ public OpenAiTokenizer(OpenAiEmbeddingModelName modelName) { this(modelName.toString()); } /** * Creates an instance of the {@code OpenAiTokenizer} for a given {@link OpenAiLanguageModelName}. */ public OpenAiTokenizer(OpenAiLanguageModelName modelName) { this(modelName.toString()); } /** * Creates an instance of the {@code OpenAiTokenizer} for a given model name. */ public OpenAiTokenizer(String modelName) { this.modelName = ensureNotBlank(modelName, "modelName"); // If the model is unknown, we should NOT fail fast during the creation of OpenAiTokenizer. // Doing so would cause the failure of every OpenAI***Model that uses this tokenizer. // This is done to account for situations when a new OpenAI model is available, // but JTokkit does not yet support it. this.encoding = Encodings.newLazyEncodingRegistry().getEncodingForModel(modelName); } public int estimateTokenCountInText(String text) { return encoding.orElseThrow(unknownModelException()) .countTokensOrdinary(text); } @Override public int estimateTokenCountInMessage(ChatMessage message) { int tokenCount = 1; // 1 token for role tokenCount += extraTokensPerMessage(); if (message instanceof SystemMessage) { tokenCount += estimateTokenCountIn((SystemMessage) message); } else if (message instanceof UserMessage) { tokenCount += estimateTokenCountIn((UserMessage) message); } else if (message instanceof AiMessage) { tokenCount += estimateTokenCountIn((AiMessage) message); } else if (message instanceof ToolExecutionResultMessage) { tokenCount += estimateTokenCountIn((ToolExecutionResultMessage) message); } else { throw new IllegalArgumentException("Unknown message type: " + message); } return tokenCount; } private int estimateTokenCountIn(SystemMessage systemMessage) { return estimateTokenCountInText(systemMessage.text()); } private int estimateTokenCountIn(UserMessage userMessage) { int tokenCount = 0; for (Content content : userMessage.contents()) { if (content instanceof TextContent) { tokenCount += estimateTokenCountInText(((TextContent) content).text()); } else if (content instanceof ImageContent) { tokenCount += 85; // TODO implement for HIGH/AUTO detail level } else { throw illegalArgument("Unknown content type: " + content); } } if (userMessage.name() != null && !modelName.equals(GPT_4_VISION_PREVIEW.toString())) { tokenCount += extraTokensPerName(); tokenCount += estimateTokenCountInText(userMessage.name()); } return tokenCount; } private int estimateTokenCountIn(AiMessage aiMessage) { int tokenCount = 0; if (aiMessage.text() != null) { tokenCount += estimateTokenCountInText(aiMessage.text()); } if (aiMessage.toolExecutionRequests() != null) { if (isOneOfLatestModels()) { tokenCount += 6; } else { tokenCount += 3; } if (aiMessage.toolExecutionRequests().size() == 1) { tokenCount -= 1; ToolExecutionRequest toolExecutionRequest = aiMessage.toolExecutionRequests().get(0); tokenCount += estimateTokenCountInText(toolExecutionRequest.name()) * 2; tokenCount += estimateTokenCountInText(toolExecutionRequest.arguments()); } else { tokenCount += 15; for (ToolExecutionRequest toolExecutionRequest : aiMessage.toolExecutionRequests()) { tokenCount += 7; tokenCount += estimateTokenCountInText(toolExecutionRequest.name()); Map<?, ?> arguments = fromJson(toolExecutionRequest.arguments(), Map.class); for (Map.Entry<?, ?> argument : arguments.entrySet()) { tokenCount += 2; tokenCount += estimateTokenCountInText(argument.getKey().toString()); tokenCount += estimateTokenCountInText(argument.getValue().toString()); } } } } return tokenCount; } private int estimateTokenCountIn(ToolExecutionResultMessage toolExecutionResultMessage) { return estimateTokenCountInText(toolExecutionResultMessage.text()); } private int extraTokensPerMessage() { if (modelName.equals("gpt-3.5-turbo-0301")) { return 4; } else { return 3; } } private int extraTokensPerName() { if (modelName.equals("gpt-3.5-turbo-0301")) { return -1; // if there's a name, the role is omitted } else { return 1; } } @Override public int estimateTokenCountInMessages(Iterable<ChatMessage> messages) { // see https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb int tokenCount = 3; // every reply is primed with <|start|>assistant<|message|> for (ChatMessage message : messages) { tokenCount += estimateTokenCountInMessage(message); } return tokenCount; } @Override public int estimateTokenCountInToolSpecifications(Iterable<ToolSpecification> toolSpecifications) { int tokenCount = 16; for (ToolSpecification toolSpecification : toolSpecifications) { tokenCount += 6; tokenCount += estimateTokenCountInText(toolSpecification.name()); if (toolSpecification.description() != null) { tokenCount += 2; tokenCount += estimateTokenCountInText(toolSpecification.description()); } tokenCount += estimateTokenCountInToolParameters(toolSpecification.parameters()); } return tokenCount; } private int estimateTokenCountInToolParameters(ToolParameters parameters) { if (parameters == null) { return 0; } int tokenCount = 3; Map<String, Map<String, Object>> properties = parameters.properties(); if (isOneOfLatestModels()) { tokenCount += properties.size() - 1; } for (String property : properties.keySet()) { if (isOneOfLatestModels()) { tokenCount += 2; } else { tokenCount += 3; } tokenCount += estimateTokenCountInText(property); for (Map.Entry<String, Object> entry : properties.get(property).entrySet()) { if ("type".equals(entry.getKey())) { if ("array".equals(entry.getValue()) && isOneOfLatestModels()) { tokenCount += 1; } // TODO object } else if ("description".equals(entry.getKey())) { tokenCount += 2; tokenCount += estimateTokenCountInText(entry.getValue().toString()); if (isOneOfLatestModels() && parameters.required().contains(property)) { tokenCount += 1; } } else if ("enum".equals(entry.getKey())) { if (isOneOfLatestModels()) { tokenCount -= 2; } else { tokenCount -= 3; } for (Object enumValue : (Object[]) entry.getValue()) { tokenCount += 3; tokenCount += estimateTokenCountInText(enumValue.toString()); } } } } return tokenCount; } @Override public int estimateTokenCountInForcefulToolSpecification(ToolSpecification toolSpecification) { int tokenCount = estimateTokenCountInToolSpecifications(singletonList(toolSpecification)); tokenCount += 4; tokenCount += estimateTokenCountInText(toolSpecification.name()); if (isOneOfLatestModels()) { tokenCount += 3; } return tokenCount; } public List<Integer> encode(String text) { return encoding.orElseThrow(unknownModelException()) .encodeOrdinary(text).boxed(); } public List<Integer> encode(String text, int maxTokensToEncode) { return encoding.orElseThrow(unknownModelException()) .encodeOrdinary(text, maxTokensToEncode).getTokens().boxed(); } public String decode(List<Integer> tokens) { IntArrayList intArrayList = new IntArrayList(); for (Integer token : tokens) { intArrayList.add(token); } return encoding.orElseThrow(unknownModelException()) .decode(intArrayList); } private Supplier<IllegalArgumentException> unknownModelException() { return () -> illegalArgument("Model '%s' is unknown to jtokkit", modelName); } @Override public int estimateTokenCountInToolExecutionRequests(Iterable<ToolExecutionRequest> toolExecutionRequests) { int tokenCount = 0; int toolsCount = 0; int toolsWithArgumentsCount = 0; int toolsWithoutArgumentsCount = 0; int totalArgumentsCount = 0; for (ToolExecutionRequest toolExecutionRequest : toolExecutionRequests) { tokenCount += 4; tokenCount += estimateTokenCountInText(toolExecutionRequest.name()); tokenCount += estimateTokenCountInText(toolExecutionRequest.arguments()); int argumentCount = countArguments(toolExecutionRequest.arguments()); if (argumentCount == 0) { toolsWithoutArgumentsCount++; } else { toolsWithArgumentsCount++; } totalArgumentsCount += argumentCount; toolsCount++; } if (modelName.equals(GPT_3_5_TURBO_1106.toString()) || isOneOfLatestGpt4Models()) { tokenCount += 16; tokenCount += 3 * toolsWithoutArgumentsCount; tokenCount += toolsCount; if (totalArgumentsCount > 0) { tokenCount -= 1; tokenCount -= 2 * totalArgumentsCount; tokenCount += 2 * toolsWithArgumentsCount; tokenCount += toolsCount; } } if (modelName.equals(GPT_4_1106_PREVIEW.toString())) { tokenCount += 3; if (toolsCount > 1) { tokenCount += 18; tokenCount += 15 * toolsCount; tokenCount += totalArgumentsCount; tokenCount -= 3 * toolsWithoutArgumentsCount; } } return tokenCount; } @Override public int estimateTokenCountInForcefulToolExecutionRequest(ToolExecutionRequest toolExecutionRequest) { if (isOneOfLatestGpt4Models()) { int argumentsCount = countArguments(toolExecutionRequest.arguments()); if (argumentsCount == 0) { return 1; } else { return estimateTokenCountInText(toolExecutionRequest.arguments()); } } int tokenCount = estimateTokenCountInToolExecutionRequests(singletonList(toolExecutionRequest)); tokenCount -= 4; tokenCount -= estimateTokenCountInText(toolExecutionRequest.name()); if (modelName.equals(GPT_3_5_TURBO_1106.toString())) { int argumentsCount = countArguments(toolExecutionRequest.arguments()); if (argumentsCount == 0) { return 1; } tokenCount -= 19; tokenCount += 2 * argumentsCount; } return tokenCount; } static int countArguments(String arguments) { if (isNullOrBlank(arguments)) { return 0; } Map<?, ?> argumentsMap = fromJson(arguments, Map.class); return argumentsMap.size(); } private boolean isOneOfLatestModels() { return isOneOfLatestGpt3Models() || isOneOfLatestGpt4Models(); } private boolean isOneOfLatestGpt3Models() { // TODO add GPT_3_5_TURBO once it points to GPT_3_5_TURBO_1106 return modelName.equals(GPT_3_5_TURBO_1106.toString()) || modelName.equals(GPT_3_5_TURBO_0125.toString()); } private boolean isOneOfLatestGpt4Models() { return modelName.equals(GPT_4_TURBO_PREVIEW.toString()) || modelName.equals(GPT_4_1106_PREVIEW.toString()) || modelName.equals(GPT_4_0125_PREVIEW.toString()); } }
[ "com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncodingForModel" ]
[((2860, 2926), 'com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncodingForModel')]
package com.ashin.util; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingRegistry; import com.knuddels.jtokkit.api.ModelType; import com.theokanning.openai.completion.chat.ChatMessage; import lombok.var; import org.springframework.stereotype.Component; import java.util.List; /** * 分词器 * * @author ashinnotfound * @date 2023/08/06 */ @Component public class Tokenizer { private final EncodingRegistry registry = Encodings.newDefaultEncodingRegistry(); /** * 计算消息token * via https://jtokkit.knuddels.de/docs/getting-started/recipes/chatml * * @param model 模型 * @param messages 消息 * @return int */ public int countMessageTokens(ModelType model, List<ChatMessage> messages) { Encoding encoding = registry.getEncodingForModel(model); int tokensPerMessage = 0; if (model.getName().startsWith("gpt-4")) { tokensPerMessage = 3; } else if (model.getName().startsWith("gpt-3.5-turbo")) { tokensPerMessage = 4; // every message follows <|start|>{role/name}\n{content}<|end|>\n } int sum = 0; for (final var message : messages) { sum += tokensPerMessage; sum += encoding.countTokens(message.getContent()); sum += encoding.countTokens(message.getRole()); } sum += 3; // every reply is primed with <|start|>assistant<|message|> return sum; } public int countMessageTokens(String modelName, List<ChatMessage> messages) { return countMessageTokens(getModelTypeByName(modelName), messages); } /** * 根据名字获取模型类型 * * @param modelName 模型名称 * @return {@code ModelType} */ public ModelType getModelTypeByName(String modelName){ if (ModelType.GPT_4.getName().equals(modelName)){ return ModelType.GPT_4; } else if (ModelType.GPT_4_32K.getName().equals(modelName)){ return ModelType.GPT_4_32K; } else if (ModelType.GPT_3_5_TURBO_16K.getName().equals(modelName)){ return ModelType.GPT_3_5_TURBO_16K; } else { return ModelType.GPT_3_5_TURBO; } } }
[ "com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName().equals", "com.knuddels.jtokkit.api.ModelType.GPT_4.getName", "com.knuddels.jtokkit.api.ModelType.GPT_4_32K.getName", "com.knuddels.jtokkit.api.ModelType.GPT_4.getName().equals", "com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName", "com.knuddels.jtokkit.api.ModelType.GPT_4_32K.getName().equals" ]
[((1898, 1941), 'com.knuddels.jtokkit.api.ModelType.GPT_4.getName().equals'), ((1898, 1923), 'com.knuddels.jtokkit.api.ModelType.GPT_4.getName'), ((1999, 2046), 'com.knuddels.jtokkit.api.ModelType.GPT_4_32K.getName().equals'), ((1999, 2028), 'com.knuddels.jtokkit.api.ModelType.GPT_4_32K.getName'), ((2108, 2163), 'com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName().equals'), ((2108, 2145), 'com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName')]
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.hw.langchain.embeddings.openai; import com.google.common.primitives.Doubles; import com.google.common.primitives.Floats; import com.hw.langchain.embeddings.base.Embeddings; import com.hw.langchain.exception.LangChainException; import com.hw.openai.OpenAiClient; import com.hw.openai.common.OpenaiApiType; import com.hw.openai.entity.embeddings.Embedding; import com.hw.openai.entity.embeddings.EmbeddingResp; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.factory.Nd4j; import lombok.AllArgsConstructor; import lombok.Builder; import java.util.*; import java.util.stream.IntStream; import static com.hw.langchain.utils.Utils.getOrEnvOrDefault; /** * Wrapper around OpenAI embedding models. * <p> * To use, you should have the environment variable OPENAI_API_KEY set with your API key or pass it as a * named parameter to the constructor. * * @author HamaWhite */ @Builder @AllArgsConstructor public class OpenAIEmbeddings implements Embeddings { private OpenAiClient client; @Builder.Default private String model = "text-embedding-ada-002"; private String openaiApiBase; /** * To support explicit proxy for OpenAI. */ private String openaiProxy; @Builder.Default private int embeddingCtxLength = 8191; private String openaiApiKey; @Builder.Default private OpenaiApiType openaiApiType = OpenaiApiType.OPENAI; private String openaiApiVersion; protected String openaiOrganization; /** * Maximum number of texts to embed in each batch */ @Builder.Default private int chunkSize = 1000; /** * Maximum number of retries to make when generating. */ @Builder.Default private int maxRetries = 6; /** * Timeout for requests to OpenAI completion API. Default is 16 seconds. */ @Builder.Default protected long requestTimeout = 16; /** * Validate parameters and init client */ public OpenAIEmbeddings init() { openaiApiKey = getOrEnvOrDefault(openaiApiKey, "OPENAI_API_KEY"); openaiApiBase = getOrEnvOrDefault(openaiApiBase, "OPENAI_API_BASE", ""); openaiProxy = getOrEnvOrDefault(openaiProxy, "OPENAI_PROXY", ""); openaiOrganization = getOrEnvOrDefault(openaiOrganization, "OPENAI_ORGANIZATION", ""); openaiApiVersion = getOrEnvOrDefault(openaiApiVersion, "OPENAI_API_VERSION", ""); this.client = OpenAiClient.builder() .openaiApiBase(openaiApiBase) .openaiApiKey(openaiApiKey) .openaiApiVersion(openaiApiVersion) .openaiApiType(openaiApiType) .openaiOrganization(openaiOrganization) .openaiProxy(openaiProxy) .requestTimeout(requestTimeout) .build() .init(); return this; } /** * <a href="https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb">Embedding texts that are longer than the model's maximum context length</a> */ private List<List<Float>> getLenSafeEmbeddings(List<String> texts) { List<List<Float>> embeddings = new ArrayList<>(texts.size()); List<List<Integer>> tokens = new ArrayList<>(); List<Integer> indices = new ArrayList<>(); Encoding encoding = Encodings.newDefaultEncodingRegistry() .getEncodingForModel(model) .orElseThrow(() -> new LangChainException("Encoding not found.")); for (int i = 0; i < texts.size(); i++) { String text = texts.get(i); if (model.endsWith("001")) { // See https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 // replace newlines, which can negatively affect performance. text = text.replace("\n", " "); } List<Integer> token = encoding.encode(text); for (int j = 0; j < token.size(); j += embeddingCtxLength) { tokens.add(token.subList(j, Math.min(j + embeddingCtxLength, token.size()))); indices.add(i); } } List<List<Float>> batchedEmbeddings = new ArrayList<>(); for (int i = 0; i < tokens.size(); i += chunkSize) { List<?> input = tokens.subList(i, Math.min(i + chunkSize, tokens.size())); var response = embedWithRetry(input); response.getData().forEach(result -> batchedEmbeddings.add(result.getEmbedding())); } List<? extends List<List<Float>>> results = IntStream.range(0, texts.size()) .mapToObj(i -> new ArrayList<List<Float>>()) .toList(); List<? extends List<Integer>> numTokensInBatch = IntStream.range(0, texts.size()) .mapToObj(i -> new ArrayList<Integer>()) .toList(); for (int i = 0; i < indices.size(); i++) { int index = indices.get(i); results.get(index).add(batchedEmbeddings.get(i)); numTokensInBatch.get(index).add(tokens.get(i).size()); } for (int i = 0; i < texts.size(); i++) { INDArray average; try (INDArray resultArray = Nd4j.create(results.get(i).stream().map(Floats::toArray).toArray(float[][]::new))) { INDArray weightsArray = Nd4j.create(Doubles.toArray(numTokensInBatch.get(i))); average = resultArray.mulRowVector(weightsArray).sum(0).div(weightsArray.sum(0)); } INDArray normalizedAverage = average.div(average.norm2Number()); embeddings.add(Floats.asList(normalizedAverage.toFloatVector())); } return embeddings; } /** * Call out to OpenAI's embedding endpoint. */ public List<Float> embeddingFunc(String text) { if (text.length() > embeddingCtxLength) { return getLenSafeEmbeddings(List.of(text)).get(0); } else { if (model.endsWith("001")) { // See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 // replace newlines, which can negatively affect performance. text = text.replace("\n", " "); } return embedWithRetry(List.of(text)).getData().get(0).getEmbedding(); } } /** * Call out to OpenAI's embedding endpoint for embedding search docs. * * @param texts The list of texts to embed. * @return List of embeddings, one for each text. */ @Override public List<List<Float>> embedDocuments(List<String> texts) { // NOTE: to keep things simple, we assume the list may contain texts longer // than the maximum context and use length-safe embedding function. return this.getLenSafeEmbeddings(texts); } /** * Call out to OpenAI's embedding endpoint for embedding query text. * * @param text The text to embed. * @return Embedding for the text. */ @Override public List<Float> embedQuery(String text) { return embeddingFunc(text); } public EmbeddingResp embedWithRetry(List<?> input) { var embedding = Embedding.builder() .model(model) .input(input) .build(); return client.createEmbedding(embedding); } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel", "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry()\n .getEncodingForModel(model).orElseThrow" ]
[((3326, 3731), 'com.hw.openai.OpenAiClient.builder()\n .openaiApiBase(openaiApiBase)\n .openaiApiKey(openaiApiKey)\n .openaiApiVersion(openaiApiVersion)\n .openaiApiType(openaiApiType)\n .openaiOrganization(openaiOrganization)\n .openaiProxy(openaiProxy)\n .requestTimeout(requestTimeout)\n .build().init'), ((3326, 3707), 'com.hw.openai.OpenAiClient.builder()\n .openaiApiBase(openaiApiBase)\n .openaiApiKey(openaiApiKey)\n .openaiApiVersion(openaiApiVersion)\n .openaiApiType(openaiApiType)\n .openaiOrganization(openaiOrganization)\n .openaiProxy(openaiProxy)\n .requestTimeout(requestTimeout).build'), ((3326, 3682), 'com.hw.openai.OpenAiClient.builder()\n .openaiApiBase(openaiApiBase)\n .openaiApiKey(openaiApiKey)\n .openaiApiVersion(openaiApiVersion)\n .openaiApiType(openaiApiType)\n .openaiOrganization(openaiOrganization)\n .openaiProxy(openaiProxy).requestTimeout'), ((3326, 3634), 'com.hw.openai.OpenAiClient.builder()\n .openaiApiBase(openaiApiBase)\n .openaiApiKey(openaiApiKey)\n .openaiApiVersion(openaiApiVersion)\n .openaiApiType(openaiApiType)\n .openaiOrganization(openaiOrganization).openaiProxy'), ((3326, 3592), 'com.hw.openai.OpenAiClient.builder()\n .openaiApiBase(openaiApiBase)\n .openaiApiKey(openaiApiKey)\n .openaiApiVersion(openaiApiVersion)\n .openaiApiType(openaiApiType).openaiOrganization'), ((3326, 3536), 'com.hw.openai.OpenAiClient.builder()\n .openaiApiBase(openaiApiBase)\n .openaiApiKey(openaiApiKey)\n .openaiApiVersion(openaiApiVersion).openaiApiType'), ((3326, 3490), 'com.hw.openai.OpenAiClient.builder()\n .openaiApiBase(openaiApiBase)\n .openaiApiKey(openaiApiKey).openaiApiVersion'), ((3326, 3438), 'com.hw.openai.OpenAiClient.builder()\n .openaiApiBase(openaiApiBase).openaiApiKey'), ((3326, 3394), 'com.hw.openai.OpenAiClient.builder().openaiApiBase'), ((4238, 4402), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry()\n .getEncodingForModel(model).orElseThrow'), ((4238, 4320), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel'), ((5476, 5595), 'java.util.stream.IntStream.range(0, texts.size())\n .mapToObj(i -> new ArrayList<List<Float>>()).toList'), ((5476, 5569), 'java.util.stream.IntStream.range(0, texts.size()).mapToObj'), ((5654, 5769), 'java.util.stream.IntStream.range(0, texts.size())\n .mapToObj(i -> new ArrayList<Integer>()).toList'), ((5654, 5743), 'java.util.stream.IntStream.range(0, texts.size()).mapToObj'), ((8112, 8216), 'com.hw.openai.entity.embeddings.Embedding.builder()\n .model(model)\n .input(input).build'), ((8112, 8191), 'com.hw.openai.entity.embeddings.Embedding.builder()\n .model(model).input'), ((8112, 8161), 'com.hw.openai.entity.embeddings.Embedding.builder().model')]
package com.hugai.chatsdk.common.utils; import cn.hutool.core.collection.CollUtil; import cn.hutool.core.util.StrUtil; import com.alibaba.fastjson2.JSONArray; import com.alibaba.fastjson2.JSONObject; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingType; import com.org.bebas.core.function.OR; import java.util.List; import java.util.Objects; /** * 估计token工具类 * * @author WuHao * @since 2023/6/1 14:32 */ public class TokenCalculateUtil { private static Encoding encoding; static { encoding = Encodings.newDefaultEncodingRegistry().getEncoding(EncodingType.CL100K_BASE); } /** * 根据内容获取消耗的token数 * * @param content * @return */ public static int getTokenNumOfContent(String content) { if (StrUtil.isEmpty(content)) return 0; return encoding.encode(content).size(); } /** * 根据内容获取消耗的token数 * * @param t * @return */ public static <T> int getTokenNumOfContents(T t) { return getTokenNumOfContents(CollUtil.newArrayList(t)); } /** * 多轮对话 * * @param tList * @return */ public static <T> int getTokenNumOfContents(List<T> tList) { if (CollUtil.isEmpty(tList)) return 0; StringBuilder strBuilder = new StringBuilder(); OR.run(JSONArray.parseArray(JSONArray.toJSONString(tList), JSONObject.class), CollUtil::isNotEmpty, jsonArrays -> { jsonArrays.forEach(item -> { if (Objects.nonNull(item)) { strBuilder.append("{") .append("message:").append(item.get("content")) .append("}"); } }); }); return encoding.encode(strBuilder.toString()).size(); } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding" ]
[((601, 677), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding')]
package kr.jm.gpt; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.EncodingType; import kr.jm.openai.OpenAiChatCompletions; import kr.jm.openai.dto.Message; import kr.jm.openai.dto.OpenAiChatCompletionsRequest; import kr.jm.openai.dto.Role; import kr.jm.openai.sse.OpenAiSseChatCompletionsPartConsumer; import kr.jm.utils.JMArrays; import kr.jm.utils.JMOptional; import kr.jm.utils.JMResources; import kr.jm.utils.enums.OS; import kr.jm.utils.helper.JMFile; import kr.jm.utils.helper.JMPath; import java.awt.*; import java.awt.datatransfer.StringSelection; import java.io.IOException; import java.nio.file.Path; import java.nio.file.Paths; import java.util.List; import java.util.Objects; import java.util.Optional; import java.util.Set; import java.util.concurrent.ExecutionException; import java.util.function.Function; public class CliGenie { private final Message systemMessage; private final String userPromptFormat; public CliGenie() { String lineSeparator = OS.getLineSeparator(); this.systemMessage = new Message(Role.system, "Act as CLI Assistant for " + OS.getOsName() + " " + OS.getOsVersion() + lineSeparator + "- Do Not: explanations and code blocks(```)\n- Response: in user's language"); this.userPromptFormat = "Generate a shell command or recommendation to %s"; } public String spell(String prmpter, Function<String, String> spellFunction) { return JMOptional.getOptional(prmpter).map(spellFunction).map(String::trim).orElseThrow(); } List<Message> buildPromptMessageList(String userPrompt) { return List.of(systemMessage, new Message(Role.user, userPrompt)); } public static void main(String... args) { CliGenieCommandLine cliGenieCommandLine = new CliGenieCommandLine(); if (JMArrays.isNullOrEmpty(args)) cliGenieCommandLine.printHelp(); else Optional.ofNullable(cliGenieCommandLine.buildCliOptionsPrompt(args)) .ifPresent(CliGenie::handleOptionAndSpell); } private static void handleOptionAndSpell(CliOptionsPrompt cliOptionsPrompt) { System.out.println(); handlePostOptions(handleGptPromptOption(cliOptionsPrompt.getOptions(), cliOptionsPrompt.getPrompt()), cliOptionsPrompt.getOptions()); } private static String handleGptPromptOption(Set<String> cliOptions, String prompt) { return cliOptions.contains("tc") ? handleTokenCounterOption(Encodings.newLazyEncodingRegistry().getEncoding(EncodingType.CL100K_BASE) .encodeOrdinary(prompt), prompt.length()) : handleOptionAndSpell(new CliGenie(), cliOptions, prompt, new OpenAiChatCompletions(getOpenaiApiKey()), new OpenAiSseChatCompletionsPartConsumer(System.out::print)); } private static String handleTokenCounterOption(List<Integer> tokenIds, int characterLength) { String tokenCounterString = String.format("%-8s%-10s%s", "Tokens", "Character", "TOKEN IDS\n") + String.format("%-8d%-10d%s", tokenIds.size(), characterLength, tokenIds); System.out.println(tokenCounterString); return tokenCounterString; } private static String handleOptionAndSpell(CliGenie cliGenie, Set<String> cliOptions, String prompt, OpenAiChatCompletions openAiChatCompletions, OpenAiSseChatCompletionsPartConsumer openAiSseChatCompletionsPartConsumer) { return cliOptions.contains("g") ? cliGenie.spell(prompt, spell -> requestWithSse(openAiChatCompletions, openAiSseChatCompletionsPartConsumer, cliGenie.buildPromptMessageList(spell), 1D)) : cliGenie.spell(prompt, spell -> requestWithSse(openAiChatCompletions, openAiSseChatCompletionsPartConsumer, cliGenie.buildPromptMessageList(String.format(cliGenie.userPromptFormat, spell)), 0D)); } private static String requestWithSse(OpenAiChatCompletions openAiChatCompletions, OpenAiSseChatCompletionsPartConsumer openAiSseChatCompletionsPartConsumer, List<Message> messages, Double temperature) { try { return openAiChatCompletions.requestWithSse( new OpenAiChatCompletionsRequest().setModel("gpt-3.5-turbo").setMaxTokens(3000) .setTemperature(temperature).setStream(true).setMessages(messages), () -> openAiSseChatCompletionsPartConsumer).get().getChoices().get(0).getMessage().getContent(); } catch (InterruptedException | ExecutionException e) { throw new RuntimeException(e); } } private static void handlePostOptions(String result, Set<String> options) { if (Objects.isNull(options) || !options.contains("no")) { String osName = System.getProperty("os.name").toLowerCase(); OS.addShutdownHook(() -> copyToClipboard(osName, result)); Optional.ofNullable(getCopyAndPasteInfo(osName)).ifPresent(copyAndPasteInfo -> System.out.println(OS.getLineSeparator() + OS.getLineSeparator() + copyAndPasteInfo)); } } private static void copyToClipboard(String osName, String result) { try { if (System.getenv("SSH_CLIENT") != null || System.getProperty("java.awt.headless") != null) copyWithCliToClipboard(result, osName); else Toolkit.getDefaultToolkit().getSystemClipboard().setContents(new StringSelection(result), null); } catch (IOException e) { throw new UnsupportedOperationException("Unsupported OS: " + osName); } } private static String getCopyAndPasteInfo(String osName) { if (osName.contains("linux")) return "Outputs copied, please paste it: Ctrl + Shift + V (Linux)."; else if (osName.contains("mac")) return "Outputs copied, please paste it: Command + V (MacOS)."; else if (osName.contains("windows")) return "Outputs copied, please paste it: Ctrl + V (Windows)."; else return null; } private static void copyWithCliToClipboard(String result, String osName) throws IOException { if (osName.contains("linux")) { Runtime.getRuntime().exec("echo '" + result + "' | xclip -selection clipboard"); } else if (osName.contains("mac")) { Runtime.getRuntime().exec("echo '" + result + "' | pbcopy"); } else if (osName.contains("windows")) { Runtime.getRuntime().exec("cmd.exe /c echo " + result + " | clip"); } else { System.out.println("Unsupported OS: " + osName); } } private static String getOpenaiApiKey() { Path openAiApiKeyFilePath = Paths.get(System.getProperty("user.home"), ".cg", "openai-api-key"); return JMOptional.getOptional(System.getenv("OPENAI_API_KEY")) .map(openAiKey -> saveOpenApiKey(openAiApiKeyFilePath, openAiKey)) .or(() -> JMResources.getStringOptionalWithFilePath(openAiApiKeyFilePath.toString())) .orElseThrow(() -> new RuntimeException("The OPENAI_API_KEY environment variable is not set.")); } private static String saveOpenApiKey(Path openAiApiKeyFilePath, String openAiApiKey) { if (!JMPath.getInstance().exists(openAiApiKeyFilePath)) OS.addShutdownHook(() -> { JMPath.getInstance().createDirectory(openAiApiKeyFilePath.getParent()); JMFile.getInstance().writeString(openAiApiKey, openAiApiKeyFilePath.toFile()); }); return openAiApiKey; } }
[ "com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncoding", "com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncoding(EncodingType.CL100K_BASE).encodeOrdinary" ]
[((1518, 1600), 'kr.jm.utils.JMOptional.getOptional(prmpter).map(spellFunction).map(String::trim).orElseThrow'), ((1518, 1586), 'kr.jm.utils.JMOptional.getOptional(prmpter).map(spellFunction).map'), ((1518, 1568), 'kr.jm.utils.JMOptional.getOptional(prmpter).map'), ((1988, 2119), 'java.util.Optional.ofNullable(cliGenieCommandLine.buildCliOptionsPrompt(args)).ifPresent'), ((2578, 2699), 'com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncoding(EncodingType.CL100K_BASE).encodeOrdinary'), ((2578, 2651), 'com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncoding'), ((5080, 5264), 'java.util.Optional.ofNullable(getCopyAndPasteInfo(osName)).ifPresent'), ((6983, 7335), 'kr.jm.utils.JMOptional.getOptional(System.getenv("OPENAI_API_KEY"))\n .map(openAiKey -> saveOpenApiKey(openAiApiKeyFilePath, openAiKey))\n .or(() -> JMResources.getStringOptionalWithFilePath(openAiApiKeyFilePath.toString())).orElseThrow'), ((6983, 7223), 'kr.jm.utils.JMOptional.getOptional(System.getenv("OPENAI_API_KEY"))\n .map(openAiKey -> saveOpenApiKey(openAiApiKeyFilePath, openAiKey)).or'), ((6983, 7121), 'kr.jm.utils.JMOptional.getOptional(System.getenv("OPENAI_API_KEY")).map'), ((7448, 7497), 'kr.jm.utils.helper.JMPath.getInstance().exists'), ((7554, 7624), 'kr.jm.utils.helper.JMPath.getInstance().createDirectory'), ((7642, 7719), 'kr.jm.utils.helper.JMFile.getInstance().writeString')]
package com.example.springai.aoai.service; import com.azure.ai.openai.OpenAIClient; import com.azure.ai.openai.OpenAIClientBuilder; import com.azure.core.credential.AzureKeyCredential; import com.example.springai.aoai.dto.ChatMessageDto; import com.example.springai.aoai.exception.TooManyRequestsException; import com.example.springai.aoai.mapper.ChatMessageMapper; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.ModelType; import jakarta.annotation.PostConstruct; import lombok.extern.slf4j.Slf4j; import org.springframework.ai.azure.openai.AzureOpenAiChatClient; import org.springframework.ai.azure.openai.AzureOpenAiChatOptions; import org.springframework.ai.chat.ChatClient; import org.springframework.ai.chat.Generation; import org.springframework.ai.chat.messages.Message; import org.springframework.ai.chat.messages.SystemMessage; import org.springframework.ai.chat.prompt.Prompt; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.http.HttpStatus; import org.springframework.retry.annotation.Backoff; import org.springframework.retry.annotation.Retryable; import org.springframework.stereotype.Service; import org.springframework.web.client.HttpClientErrorException; import reactor.core.publisher.Flux; import java.util.ArrayList; import java.util.List; import java.util.Optional; import java.util.stream.Collectors; /** * Chatbot service */ @Service @Slf4j public class ChatbotService { @Autowired private final ChatClient chatClient; @Autowired private final SystemMessage systemMessage; @Autowired private final ChatMessageMapper chatMessageMapper; @Value("${spring.ai.azure.openai.endpoint}") private String azureOpenAiEndpoint; @Value("${spring.ai.azure.openai.api-key}") private String azureOpenAiApiKey; @Value("${spring.ai.azure.openai.chat.options.model}") private String model; @Value("${spring.ai.azure.openai.chat.options.max-tokens}") private Integer maxTokens; @Value("${spring.ai.azure.openai.chat.options.temperature}") private Float temperature; private Encoding encoding; private Optional<ModelType> modelType; /** * Constructor * * @param chatClient the chatClient * @param systemMessage the system message * @param chatMessageMapper the ChatMessage Mapper */ public ChatbotService(ChatClient chatClient, SystemMessage systemMessage, ChatMessageMapper chatMessageMapper) { this.chatClient = chatClient; this.systemMessage = systemMessage; this.chatMessageMapper = chatMessageMapper; } /** * Calls OpenAI chat completion API and returns a Generation object * Retry with exponential backoff on 429 Too Many Requests status code * * @param chatMessageDtos list of all user and assistant messages * @return a Generation object */ @Retryable( retryFor = {TooManyRequestsException.class}, maxAttempts = 3, backoff = @Backoff(delay = 1000, maxDelay = 5000, multiplier = 2)) public Optional<Generation> completion(List<ChatMessageDto> chatMessageDtos) { List<Message> messages = new ArrayList<>(chatMessageMapper.toMessage(chatMessageDtos)); messages.add(0, systemMessage); Prompt prompt = new Prompt(messages); Generation gen = null; try { gen = chatClient.call(prompt).getResults().get(0); } catch (RuntimeException e) { log.error("Caught a RuntimeException: " + e.getMessage()); if (e instanceof HttpClientErrorException) { if (((HttpClientErrorException) e).getStatusCode().equals(HttpStatus.TOO_MANY_REQUESTS)) { throw new TooManyRequestsException(e.getMessage()); } } } return Optional.ofNullable(gen); } /** * Calls OpenAI chat completion API in Stream mode and returns a Flux object * * @param chatMessageDtos list of all user and assistant messages * @return a Generation object */ @Retryable( retryFor = {TooManyRequestsException.class}, maxAttempts = 3, backoff = @Backoff(delay = 1000, maxDelay = 5000, multiplier = 2)) public Flux<Generation> completionWithStream(List<ChatMessageDto> chatMessageDtos) { List<Message> messages = new ArrayList<>(chatMessageMapper.toMessage(chatMessageDtos)); messages.add(0, systemMessage); Prompt prompt = new Prompt(messages); OpenAIClientBuilder openAIClientBuilder = new OpenAIClientBuilder(); OpenAIClient openAIClient = openAIClientBuilder.credential(new AzureKeyCredential(azureOpenAiApiKey)).endpoint(azureOpenAiEndpoint).buildClient(); var azureOpenAiChatClient = new AzureOpenAiChatClient(openAIClient).withDefaultOptions(AzureOpenAiChatOptions.builder().withModel(model).withTemperature(temperature).withMaxTokens(maxTokens).build()); return azureOpenAiChatClient.stream(prompt) .onErrorResume(e -> { log.error("Caught a RuntimeException: " + e.getMessage()); if (e instanceof HttpClientErrorException) { if (((HttpClientErrorException) e).getStatusCode().equals(HttpStatus.TOO_MANY_REQUESTS)) { throw new TooManyRequestsException(e.getMessage()); } } return Flux.empty(); }) .flatMap(s -> Flux.fromIterable(s.getResults())); } /** * Initializing encoding and model type after bean creation */ @PostConstruct public void postConstructInit() { //Hack because jtokkit's model name has a dot this.modelType = ModelType.fromName(model.replace("35", "3.5")); if (this.modelType.isEmpty()) { log.error("Could not get model from name"); throw new IllegalStateException(); } this.encoding = Encodings.newDefaultEncodingRegistry().getEncodingForModel(this.modelType.get()); } /** * Checking if the context window of the model is big enough * * @param chatMessageDtos list of all user and assistant messages * @return true if the context window of the model is big enough, false if not */ public boolean isContextLengthValid(List<ChatMessageDto> chatMessageDtos) { String contextWindow = systemMessage.getContent() + chatMessageDtos.stream() .map(ChatMessageDto::getContent) .collect(Collectors.joining()); int currentContextLength = this.encoding.countTokens(contextWindow); if (this.modelType.isPresent()) { return (this.modelType.get().getMaxContextLength() > (currentContextLength + maxTokens)); } return false; } /** * Adjusting the number of messages in the context window to fit the model's max context length * * @param chatMessageDtos list of all user and assistant messages * @return same list if model's max context length has not been reached, smaller list if it has */ public List<ChatMessageDto> adjustContextWindow(List<ChatMessageDto> chatMessageDtos) { List<ChatMessageDto> chatMessagesDtosAdjusted = new ArrayList<>(chatMessageDtos); for (int i = 0; i < chatMessageDtos.size(); i++) { if (!isContextLengthValid(chatMessagesDtosAdjusted)) { chatMessagesDtosAdjusted.remove(0); } else { break; } } return chatMessagesDtosAdjusted; } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel" ]
[((4999, 5110), 'org.springframework.ai.azure.openai.AzureOpenAiChatOptions.builder().withModel(model).withTemperature(temperature).withMaxTokens(maxTokens).build'), ((4999, 5102), 'org.springframework.ai.azure.openai.AzureOpenAiChatOptions.builder().withModel(model).withTemperature(temperature).withMaxTokens'), ((4999, 5077), 'org.springframework.ai.azure.openai.AzureOpenAiChatOptions.builder().withModel(model).withTemperature'), ((4999, 5048), 'org.springframework.ai.azure.openai.AzureOpenAiChatOptions.builder().withModel'), ((6165, 6245), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel')]
package top.verytouch.vkit.chat.gpt; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingType; import lombok.extern.slf4j.Slf4j; import top.verytouch.vkit.chat.gpt.pojo.*; import top.verytouch.vkit.common.util.HttpUtils; import top.verytouch.vkit.common.util.JsonUtils; import top.verytouch.vkit.common.util.MapUtils; import top.verytouch.vkit.common.util.StringUtils; import java.nio.charset.StandardCharsets; import java.time.Duration; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Objects; import java.util.function.BiConsumer; import java.util.function.Consumer; /** * chat-gpt接口 * * @author verytouch * @since 2023/7/3 10:49 */ @Slf4j public class ChatGPTService { private final ChatGPTProperties properties; private final Encoding encoding; public ChatGPTService(ChatGPTProperties properties) { this.properties = properties; this.encoding = Encodings.newLazyEncodingRegistry().getEncoding(EncodingType.fromName(properties.getTokenEncodingType()).orElse(EncodingType.CL100K_BASE)); } /** * 计算token数量 */ public int tokens(String content) { return encoding.countTokens(content); } /** * 聊天 gpt-3.5-turbo * * @param messages 如果需要上下文,需要把之前的会话信息放入messages数组 */ public ChatCompletionsResponse chatCompletions(List<Message> messages) { Map<String, Object> body = MapUtils.Builder.hashMap(String.class, Object.class) .put("model", ChatGPTProperties.MODEL_TURBO) .put("messages", messages) .build(); String responseString = post(JsonUtils.toJson(body), ChatGPTApiEnum.CHAT_COMPLETIONS); return JsonUtils.fromJson(responseString, ChatCompletionsResponse.class); } /** * 聊天 gpt-3.5-turbo sse方式 * * @param messages 如果需要上下文,需要把之前的会话信息放入messages数组 * @param consumer 每次返回的数据 * @param finisher ChunkResponse为所有请求拼接好的,usage依照拼接好的算 */ public void chatCompletions(List<Message> messages, Consumer<String> consumer, BiConsumer<ChunkResponse, Usage> finisher) { Map<String, Object> body = MapUtils.Builder.hashMap(String.class, Object.class) .put("model", ChatGPTProperties.MODEL_TURBO) .put("messages", messages) .put("stream", true) .build(); Consumer<List<String>> myFinisher = list -> { ChunkResponse response = list.stream().map(this::parseChunk) .filter(Objects::nonNull) .reduce(ChunkResponse::mergeMessage) .orElse(null); int promptTokens = messages.stream() .map(Message::getContent) .map(this::tokens) .reduce(0, Math::addExact); int completionTokens = 0; try { completionTokens = response == null ? 0 : this.tokens(response.getChoices().get(0).getDelta().getContent()); } catch (Exception e) { log.error("计算completionTokens异常", e); } Usage usage = Usage.of(promptTokens, completionTokens); finisher.accept(response, usage); log.info("chat-gpt-chunk组装后的数据 = {}, usage = {}", response, usage); }; post(JsonUtils.toJson(body), ChatGPTApiEnum.CHAT_COMPLETIONS, consumer, myFinisher); } /** * 聊天 text-davinci-003 */ public CompletionsResponse completions(CompletionsRequest request) { request.setModel(ChatGPTProperties.MODEL_DAVINCI3); String responseString = post(JsonUtils.toJson(request), ChatGPTApiEnum.COMPLETIONS); return JsonUtils.fromJson(responseString, CompletionsResponse.class); } /** * 生成图片 */ public CreateImageResponse createImage(CreateImageRequest request) { String responseString = post(JsonUtils.toJson(request), ChatGPTApiEnum.CREATE_IMAGE); CreateImageResponse imageResponse = JsonUtils.fromJson(responseString, CreateImageResponse.class); Integer completionTokens = imageResponse.getData().stream() .map(CreateImageResponse.Data::getUrl) .map(this::tokens) .reduce(0, Math::addExact); imageResponse.setUsage(Usage.of(this.tokens(request.getPrompt()), completionTokens)); return imageResponse; } /** * chunk字符串转bean * * @param json json or sse-prefixed json */ public ChunkResponse parseChunk(String json) { String prefix = "data: "; if (StringUtils.isBlank(json)) { return null; } if (json.startsWith(prefix)) { json = json.substring(prefix.length()); } json = json.trim(); if (!json.startsWith("{") && !json.endsWith("}")) { return null; } return JsonUtils.fromJson(json, ChunkResponse.class); } public String post(String body, ChatGPTApiEnum apiEnum) { String responseString; try { responseString = prepare(body, apiEnum).request().getString(); } catch (Exception e) { log.error("请求chat-gpt失败", e); throw new RuntimeException(e); } log.info("请求chat-gpt完成, api={}, response={}", apiEnum.getPath(), responseString); return responseString; } public void post(String body, ChatGPTApiEnum apiEnum, Consumer<String> consumer, Consumer<List<String>> finisher) { List<String> msgList = new LinkedList<>(); try { prepare(body, apiEnum).sseRequest(msg -> { log.debug("请求chat-gpt-chunk返回, api={}, chunk={}", apiEnum.getPath(), msg); consumer.accept(msg); msgList.add(msg); }); } catch (Exception e) { throw new RuntimeException(e); } finally { log.info("请求chat-gpt-chunk完成, api={}", apiEnum.getPath()); finisher.accept(msgList); } } private HttpUtils prepare(String body, ChatGPTApiEnum apiEnum) { log.info("请求chat-gpt开始, api={}, params={}", apiEnum.getPath(), body); return new HttpUtils(properties.getHost() + apiEnum.getPath()) .addHeader("Authorization", "Bearer " + properties.getApikey()) .addHeader("Content-Type", "application/json") .body(body.getBytes(StandardCharsets.UTF_8)) .method("POST") .connectTimeout(Duration.ofSeconds(30)) .readTimeout(Duration.ofSeconds(120)); } }
[ "com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncoding", "com.knuddels.jtokkit.api.EncodingType.fromName(properties.getTokenEncodingType()).orElse" ]
[((1003, 1141), 'com.knuddels.jtokkit.Encodings.newLazyEncodingRegistry().getEncoding'), ((1051, 1140), 'com.knuddels.jtokkit.api.EncodingType.fromName(properties.getTokenEncodingType()).orElse'), ((1545, 1726), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap(String.class, Object.class)\n .put("model", ChatGPTProperties.MODEL_TURBO)\n .put("messages", messages).build'), ((1545, 1701), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap(String.class, Object.class)\n .put("model", ChatGPTProperties.MODEL_TURBO).put'), ((1545, 1658), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap(String.class, Object.class).put'), ((1545, 1597), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap'), ((2372, 2590), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap(String.class, Object.class)\n .put("model", ChatGPTProperties.MODEL_TURBO)\n .put("messages", messages)\n .put("stream", true).build'), ((2372, 2565), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap(String.class, Object.class)\n .put("model", ChatGPTProperties.MODEL_TURBO)\n .put("messages", messages).put'), ((2372, 2528), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap(String.class, Object.class)\n .put("model", ChatGPTProperties.MODEL_TURBO).put'), ((2372, 2485), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap(String.class, Object.class).put'), ((2372, 2424), 'top.verytouch.vkit.common.util.MapUtils.Builder.hashMap')]
package com.xiaohai.spider.chatgpt.azure; import cn.hutool.core.text.CharSequenceUtil; import com.azure.ai.openai.models.ChatMessage; import com.azure.ai.openai.models.ChatRole; import com.azure.ai.openai.models.FunctionCall; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingRegistry; import com.knuddels.jtokkit.api.ModelType; import com.xiaohai.common.exception.ServiceException; import lombok.extern.slf4j.Slf4j; import javax.validation.constraints.NotNull; import java.util.ArrayList; import java.util.List; import java.util.Objects; /** * token计算工具类 * * @author wangchenghai * @date 2023/08/22 16:00:18 */ @Slf4j public class TikTokensUtil { public static final String NOT_MODEL="当前模型不存在,无法计算tokens"; /** * registry实例 */ private static final EncodingRegistry REGISTRY = Encodings.newDefaultEncodingRegistry(); /** * 通过模型名称计算messages获取编码数组 * 参考官方的处理逻辑: * <a href=https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb>https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb</a> * * @param modelName 模型名称 * @param messages 消息体 * @return tokens数量 */ public static int tokens(@NotNull String modelName, @NotNull List<ChatMessage> messages) throws ServiceException { Encoding encoding = REGISTRY.getEncodingForModel(modelName).orElseThrow(() -> new ServiceException(NOT_MODEL)); int tokensPerMessage = 0; int tokensPerName = 0; if (modelName.equals("gpt-3.5-turbo-0613") || modelName.equals("gpt-3.5-turbo-16k-0613") || modelName.equals("gpt-4-0314") || modelName.equals("gpt-4-32k-0314") || modelName.equals("gpt-4-0613") || modelName.equals("gpt-4-32k-0613") ) { tokensPerMessage = 3; tokensPerName = 1; } else if (modelName.equals("gpt-3.5-turbo-0301")) { tokensPerMessage = 4; tokensPerName = -1; } else if (modelName.contains("gpt-3.5-turbo")) { //"gpt-3.5-turbo" in model: log.warn("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613."); tokensPerMessage = 3; tokensPerName = 1; } else if (modelName.contains("gpt-4")) { log.warn("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613."); tokensPerMessage = 3; tokensPerName = 1; } else { log.warn("不支持的model {}. See https://github.com/openai/openai-python/blob/main/chatml.md 更多信息.", modelName); } int sum = 0; for (ChatMessage msg : messages) { sum += tokensPerMessage; sum += encoding.countTokens(msg.getContent()); sum += encoding.countTokens(msg.getRole().toString()); sum += encoding.countTokens(msg.getName()); FunctionCall functionCall = msg.getFunctionCall(); sum += Objects.isNull(functionCall) ? 0 : encoding.countTokens(functionCall.toString()); if (CharSequenceUtil.isNotBlank(msg.getName())) { sum += tokensPerName; } } //every reply is primed with <|start|>assistant<|message|> sum += 3; return sum; } public static int tokenCount(@NotNull String modelName, @NotNull String text) throws ServiceException { Encoding encoding = REGISTRY.getEncodingForModel(modelName).orElseThrow(() -> new ServiceException(NOT_MODEL)); return encoding.countTokens(text); } public static void main(String[] args) throws ServiceException { List<ChatMessage> chatMessage = new ArrayList<>(); chatMessage.add(new ChatMessage(ChatRole.USER, "请介绍一下你自己")); System.out.println(tokens(ModelType.GPT_3_5_TURBO_16K.getName(), chatMessage)); List<ChatMessage> chatMessages = new ArrayList<>(); chatMessages.add(new ChatMessage(ChatRole.SYSTEM, "你是一个乐于助人的助手.你会像海盗一样说话.")); chatMessages.add(new ChatMessage(ChatRole.USER, "你可以帮我吗?")); chatMessages.add(new ChatMessage(ChatRole.ASSISTANT, "当然,亲爱的!我能为你做什么?")); chatMessages.add(new ChatMessage(ChatRole.USER, "训练一只鹦鹉最好的方法是什么?")); System.out.println(tokens(ModelType.GPT_3_5_TURBO_16K.getName(), chatMessages)); String text="嗯,听起来你想要训练一只鹦鹉啊!啊哈哈,这可正是我的长项之一,就像航海中的掌舵一样。让我来为你指引一下正确的航线吧!\n" + "\n" + "首先,要记住,训练鹦鹉需要耐心和恒心。鹦鹉是聪明的鸟类,但训练可能需要一些时间。你愿意与我一同探索吗?\n" + "\n" + "1. 建立良好的关系:与鹦鹉建立互信和强烈的联系非常重要。花时间与它相处,让它逐渐熟悉你的声音和存在。\n" + "\n" + "2. 基本指令训练:从基本指令开始,如“坐下”、“飞起来”等。使用手势和声音命令来帮助鹦鹉理解你的意图。\n" + "\n" + "3. 奖励系统:表扬和奖励是鹦鹉训练的关键。使用喜欢的零食或鹦鹉喜欢的食物来奖励它,以积极正面的方式加强它的行为。\n" + "\n" + "4. 重复训练:鹦鹉需要不断的重复和强化来巩固训练成果。每天进行几次短时间的训练会带来更好的效果。\n" + "\n" + "5. 社交训练:让鹦鹉与人和其他动物进行互动有助于增加它的社交能力和适应性。\n" + "\n" + "6. 避免惩罚:避免使用过度惩罚或伤害鹦鹉的方法,这对于建立良好的训练关系不利。\n" + "\n" + "记住,每只鹦鹉都有自己的个性和学习速度,所以要根据鹦鹉的需求和进展调整训练计划。希望这些建议能帮你顺利驾驭你的鹦鹉船,啊哈哈!"; int tokenCount = tokenCount(ModelType.GPT_3_5_TURBO_16K.getName(), text); System.out.println(tokenCount); } }
[ "com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName" ]
[((4098, 4135), 'com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName'), ((4666, 4703), 'com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName'), ((6482, 6519), 'com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName')]
package tw.xserver.gpt; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingType; public class TokenCounter { // private static final Encoding ENC =Encodings.newDefaultEncodingRegistry().getEncodingForModel(ModelType.GPT_3_5_TURBO); private static final Encoding ENC = Encodings.newDefaultEncodingRegistry().getEncoding(EncodingType.P50K_BASE); public static int getToken(String content) { return ENC.encode(content).size() + 7; } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding" ]
[((352, 426), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding')]
/* * Copyright 2023 lzhpo * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.lzhpo.chatgpt.utils; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingRegistry; import com.knuddels.jtokkit.api.ModelType; import com.lzhpo.chatgpt.entity.chat.ChatCompletionMessage; import com.lzhpo.chatgpt.exception.OpenAiException; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.function.ToIntFunction; import lombok.experimental.UtilityClass; import lombok.extern.slf4j.Slf4j; import org.springframework.util.Assert; import org.springframework.util.StringUtils; /** * <a href="https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb">How_to_count_tokens_with_tiktoken</a> * <pre> * {@code * def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"): * """Returns the number of tokens used by a list of messages.""" * try: * encoding = tiktoken.encoding_for_model(model) * except KeyError: * print("Warning: model not found. Using cl100k_base encoding.") * encoding = tiktoken.get_encoding("cl100k_base") * if model == "gpt-3.5-turbo": * print("Warning: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.") * return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") * elif model == "gpt-4": * print("Warning: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.") * return num_tokens_from_messages(messages, model="gpt-4-0314") * elif model == "gpt-3.5-turbo-0301": * tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n * tokens_per_name = -1 # if there's a name, the role is omitted * elif model == "gpt-4-0314": * tokens_per_message = 3 * tokens_per_name = 1 * else: * raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""") * num_tokens = 0 * for message in messages: * num_tokens += tokens_per_message * for key, value in message.items(): * num_tokens += len(encoding.encode(value)) * if key == "name": * num_tokens += tokens_per_name * num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> * return num_tokens * } * </pre> * * * @author lzhpo */ @Slf4j @UtilityClass public class TokenUtils { private static final int REPLY_PRIMED_NUM = 3; private static final EncodingRegistry REGISTRY = Encodings.newDefaultEncodingRegistry(); private static final Map<String, ToIntFunction<String>> PER_MODEL_MAP = new HashMap<>(4); static { PER_MODEL_MAP.put("gpt-3.5-turbo", name -> 4 + (StringUtils.hasText(name) ? -1 : 0)); PER_MODEL_MAP.put("gpt-3.5-turbo-0301", name -> 4 + (StringUtils.hasText(name) ? -1 : 0)); PER_MODEL_MAP.put("gpt-4", name -> 3 + (StringUtils.hasText(name) ? 1 : 0)); PER_MODEL_MAP.put("gpt-4-0314", name -> 3 + (StringUtils.hasText(name) ? 1 : 0)); } /** * Get the {@link #REGISTRY}. * * @return {@link EncodingRegistry} */ public static EncodingRegistry getRegistry() { return REGISTRY; } /** * Returns the encoding that is used for the given model type. * * @param modelType {@link ModelType} * @return the encoding */ public static Encoding getEncoding(ModelType modelType) { return getRegistry().getEncodingForModel(modelType); } /** * Encodes the {@code content} into a list of token ids and returns the amount of tokens. * * @param modelType {@link ModelType} * @param content content * @return the tokens */ public static Long tokens(ModelType modelType, String content) { Encoding encoding = getEncoding(modelType); return (long) encoding.countTokens(content); } /** * Encodes the {@code content} into a list of token ids and returns the amount of tokens. * * @param modelTypeName {@link ModelType} name * @param content content * @return the tokens */ public static Long tokens(String modelTypeName, String content) { ModelType modelType = ModelType.fromName(modelTypeName) .orElseThrow(() -> new OpenAiException("Unknown model " + modelTypeName)); return tokens(modelType, content); } /** * Encodes the {@code messages} into a list of token ids and returns the amount of tokens. * * @param model model * @param messages messages * @return tokens */ public static Long tokens(String model, List<ChatCompletionMessage> messages) { Assert.hasText(model, "model cannot empty."); Assert.notEmpty(messages, "messages cannot empty."); return REPLY_PRIMED_NUM + messages.stream() .map(message -> { String name = message.getName(); ToIntFunction<String> handler = PER_MODEL_MAP.getOrDefault(model, x -> 0); return handler.applyAsInt(name) + tokens(model, name) + tokens(model, message.getRole()) + tokens(model, message.getContent()); }) .mapToLong(Long::longValue) .sum(); } }
[ "com.knuddels.jtokkit.api.ModelType.fromName(modelTypeName).orElseThrow" ]
[((5020, 5143), 'com.knuddels.jtokkit.api.ModelType.fromName(modelTypeName).orElseThrow')]
package com.gzhu.funai.api.openai; import cn.hutool.http.ContentType; import cn.hutool.json.JSONUtil; import com.alibaba.fastjson.JSON; import com.gzhu.funai.api.openai.constant.OpenAIConst; import com.gzhu.funai.api.openai.enums.OpenAiRespError; import com.gzhu.funai.api.openai.req.ChatGPTReq; import com.gzhu.funai.api.openai.req.EmbeddingReq; import com.gzhu.funai.api.openai.resp.BillingUsage; import com.gzhu.funai.api.openai.resp.ChatGPTResp; import com.gzhu.funai.api.openai.resp.EmbeddingResp; import com.gzhu.funai.api.openai.resp.CreditGrantsResp; import com.gzhu.funai.exception.BaseException; import com.gzhu.funai.global.constant.GlobalConstant; import com.gzhu.funai.utils.DateTimeFormatterUtil; import com.gzhu.funai.utils.OkHttpClientUtil; import com.gzhu.funai.utils.ResultCode; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingType; import lombok.extern.slf4j.Slf4j; import okhttp3.*; import okhttp3.sse.EventSource; import okhttp3.sse.EventSourceListener; import okhttp3.sse.EventSources; import java.io.IOException; import java.math.BigDecimal; import java.math.RoundingMode; import java.time.Instant; import java.time.LocalDate; import java.time.ZoneId; import java.util.List; import java.util.Map; import java.util.Objects; /** * @Author: huangpenglong * @Date: 2023/3/9 10:57 */ @Slf4j public class ChatGPTApi{ private static final String AUTHORIZATION_STR = "Authorization"; private static Encoding enc; static { enc = Encodings.newDefaultEncodingRegistry().getEncoding(EncodingType.CL100K_BASE); } /** * 一次对话 * @param gpt * @param apiKey * @return */ public static ChatGPTResp oneShotReq(ChatGPTReq gpt, String apiKey){ return sessionReq(gpt, apiKey); } /** * 带上下文的对话 * Ps:之前使用hutool的HttpRequest写请求,但遇到了handshake_failure 错误。目前换成了OKHttp * @param gpt * @param apiKey * @return */ public static ChatGPTResp sessionReq(ChatGPTReq gpt, String apiKey) { Request request = new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.CHATGPT_MAPPING) .post(RequestBody.create(MediaType.parse(ContentType.JSON.getValue()), JSONUtil.parseObj(gpt).toString())) .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build(); Response response = null; try { response = OkHttpClientUtil.getClient().newCall(request).execute(); if(!response.isSuccessful()){ OpenAiRespError openAiRespError = OpenAiRespError.get(response.code()); log.error("请求ChatGPT异常! {}", openAiRespError.msg); throw new BaseException(openAiRespError.msg); } String body = response.body().string(); return JSONUtil.toBean(body, ChatGPTResp.class); } catch (IOException e) { log.error("okHttpClient异常! {}", e.getMessage()); } finally { if(response != null){ response.close(); } } return null; } /** * 查询apiKey的余额 * Ps:之前使用hutool的HttpRequest写请求,但遇到了handshake_failure 错误。目前换成了OKHttp * @param apiKey * @return */ public static CreditGrantsResp creditGrants(String apiKey){ Request request = new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.CREDIT_GRANTS_MAPPING) .get() .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build(); Response response = null; try { response = OkHttpClientUtil.getClient().newCall(request).execute(); if(!response.isSuccessful()){ OpenAiRespError openAiRespError = OpenAiRespError.get(response.code()); log.error("请求ChatGPT异常! {}", openAiRespError.msg); throw new BaseException(openAiRespError.msg); } String body = response.body().string(); log.info("{}调用查询余额请求,返回值:{}",apiKey, body); return JSONUtil.toBean(body, CreditGrantsResp.class); } catch (IOException e) { log.error("okHttpClient异常! {}", e.getMessage()); } finally { if(response != null){ response.close(); } } return null; } /** * 以流式输出的方式进行多轮对话 * @param chatGPTReq * @param apiKey * @param eventSourceListener */ public static void streamSessionReq(ChatGPTReq chatGPTReq, String apiKey, EventSourceListener eventSourceListener){ if (Objects.isNull(eventSourceListener)) { log.error("参数异常:EventSourceListener不能为空"); throw new BaseException(ResultCode.EMPTY_PARAM.msg); } try { EventSource.Factory factory = EventSources.createFactory(OkHttpClientUtil.getClient()); String requestBody = JSONUtil.parseObj(chatGPTReq).toString(); Request request = new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.CHATGPT_MAPPING) .post(RequestBody.create(MediaType.parse(ContentType.JSON.getValue()), requestBody)) .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build(); // 绑定请求 和 事件监听器 factory.newEventSource(request, eventSourceListener); } catch (Exception e) { log.error("请求参数解析异常:{}", e); } } /** * 文本编码 * @param input * @param apiKey * @return */ public static EmbeddingResp embeddings(List<String> input, String apiKey){ EmbeddingReq embeddingReq = EmbeddingReq.builder().input(input).build(); Request request = new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.EMBEDDING_MAPPING) .post(RequestBody.create(MediaType.parse(ContentType.JSON.getValue()), JSONUtil.parseObj(embeddingReq).toString())) .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build(); Response response = null; try { response = OkHttpClientUtil.getClient().newCall(request).execute(); if(!response.isSuccessful()){ OpenAiRespError openAiRespError = OpenAiRespError.get(response.code()); log.error("Embedding异常! {}", openAiRespError.msg); throw new BaseException(openAiRespError.msg); } String body = response.body().string(); return JSONUtil.toBean(body, EmbeddingResp.class); } catch (IOException e) { log.error("okHttpClient异常! {}", e.getMessage()); } finally { if(response != null){ response.close(); } } return null; } /** * 估计字符串占多少个token * @param message * @return */ public static int getTokenNum(String message){ return enc.encode(message).size(); } /** * 估计一轮上下文对话占多少个token * @param message * @return */ public static int getMessageTokenNum(String message){ return enc.encode("role: {user}, message: {" + message + "}").size(); } /** * 获取apiKey的额度信息 * @param apiKey * @return */ public static BillingUsage getBillingUsage(String apiKey){ Response subResponse = null; Response usageResponse = null; try { subResponse = OkHttpClientUtil.getClient() .newCall( new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.SUBSCRIPTION_MAPPING) .get() .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build()) .execute(); // openai请求错误 if(!subResponse.isSuccessful()){ OpenAiRespError openAiRespError = OpenAiRespError.get(subResponse.code()); log.error("请求ChatGPT异常! {}", openAiRespError.msg); throw new BaseException(openAiRespError.msg); } // 判断账号是否过期 Map subMap = JSON.parseObject(subResponse.body().string(), Map.class); long accessUntil = Long.parseLong(String.valueOf(subMap.get("access_until"))); if(accessUntil * GlobalConstant.TEN_K < System.currentTimeMillis()){ log.warn("检查到apiKey:{}过期,过期时间{}", apiKey, Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone(ZoneId.systemDefault()).toLocalDate()); // 不抛异常,因为特殊的apiKey过期了还能使用 // throw new BaseException(OpenAiRespError.OPENAI_APIKEY_EXPIRED.code, OpenAiRespError.OPENAI_APIKEY_EXPIRED.msg); } // 获取总额度 BigDecimal totalAmount = BigDecimal.valueOf(Double.parseDouble(String.valueOf(subMap.get("hard_limit_usd")))); // 获取已使用额度 (滑动日期窗口获取,因为该死的openai一次只能拿100天的使用额度) BigDecimal totalUsage = new BigDecimal(0); LocalDate startDate = LocalDate.now().minusDays(95); LocalDate endDate = LocalDate.now().plusDays(1); while(true){ // 查询日期范围内的使用额度 String usageUrl = OpenAIConst.HOST + String.format( OpenAIConst.USAGE_MAPPING, DateTimeFormatterUtil.DFT.format(startDate), DateTimeFormatterUtil.DFT.format(endDate)); usageResponse = OkHttpClientUtil.getClient() .newCall(new Request.Builder() .url(usageUrl) .get() .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build()) .execute(); Map usageMap = JSON.parseObject(usageResponse.body().string(), Map.class); BigDecimal curUsage = BigDecimal.valueOf(Double.parseDouble(String.valueOf(usageMap.get("total_usage")))); // 当在某次范围内查出的使用额度为0,说明此前长时间没使用过 if(curUsage.compareTo(BigDecimal.ZERO) <= 0){ break; } // 累加使用额度 totalUsage = totalUsage.add(curUsage); // 统计日期窗口向前滑动 endDate = startDate; startDate = endDate.minusDays(95); } return new BillingUsage( totalAmount, totalUsage.divide(new BigDecimal("100"), 2, RoundingMode.HALF_UP), Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone(ZoneId.systemDefault()).toLocalDate()); } catch (IOException e) { log.error("okHttpClient异常! {}", e.getMessage()); } finally { if(subResponse != null){ subResponse.close(); } if(usageResponse != null){ usageResponse.close(); } } return null; } private ChatGPTApi(){} }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding" ]
[((1543, 1619), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding'), ((2303, 2330), 'cn.hutool.http.ContentType.JSON.getValue'), ((2333, 2366), 'cn.hutool.json.JSONUtil.parseObj(gpt).toString'), ((2529, 2584), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall(request).execute'), ((2529, 2574), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((3809, 3864), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall(request).execute'), ((3809, 3854), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((5218, 5258), 'cn.hutool.json.JSONUtil.parseObj(chatGPTReq).toString'), ((5446, 5473), 'cn.hutool.http.ContentType.JSON.getValue'), ((6027, 6070), 'com.gzhu.funai.api.openai.req.EmbeddingReq.builder().input(input).build'), ((6027, 6062), 'com.gzhu.funai.api.openai.req.EmbeddingReq.builder().input'), ((6248, 6275), 'cn.hutool.http.ContentType.JSON.getValue'), ((6278, 6320), 'cn.hutool.json.JSONUtil.parseObj(embeddingReq).toString'), ((6483, 6538), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall(request).execute'), ((6483, 6528), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((7899, 8252), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient()\n .newCall(\n new Request.Builder()\n .url(OpenAIConst.HOST + OpenAIConst.SUBSCRIPTION_MAPPING)\n .get()\n .header(AUTHORIZATION_STR, "Bearer " + apiKey)\n .build()).execute'), ((7899, 8221), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((8976, 9077), 'java.time.Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone(ZoneId.systemDefault()).toLocalDate'), ((8976, 9063), 'java.time.Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone'), ((9673, 9702), 'java.time.LocalDate.now().minusDays'), ((9736, 9763), 'java.time.LocalDate.now().plusDays'), ((9989, 10032), 'com.gzhu.funai.utils.DateTimeFormatterUtil.DFT.format'), ((10058, 10099), 'com.gzhu.funai.utils.DateTimeFormatterUtil.DFT.format'), ((10134, 10459), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient()\n .newCall(new Request.Builder()\n .url(usageUrl)\n .get()\n .header(AUTHORIZATION_STR, "Bearer " + apiKey)\n .build()).execute'), ((10134, 10424), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((11310, 11411), 'java.time.Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone(ZoneId.systemDefault()).toLocalDate'), ((11310, 11397), 'java.time.Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone')]
/* * * Copyright (c) Meta Platforms, Inc. and affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ package com.meta.cp4m.llm; import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.node.ArrayNode; import com.fasterxml.jackson.databind.node.ObjectNode; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.meta.cp4m.message.Message; import com.meta.cp4m.message.Message.Role; import com.meta.cp4m.message.ThreadState; import java.io.IOException; import java.net.URI; import java.net.URISyntaxException; import java.time.Instant; import java.util.Optional; import org.apache.hc.client5.http.fluent.Request; import org.apache.hc.client5.http.fluent.Response; import org.apache.hc.core5.http.ContentType; import org.checkerframework.checker.nullness.qual.Nullable; import org.checkerframework.common.returnsreceiver.qual.This; import org.jetbrains.annotations.TestOnly; public class OpenAIPlugin<T extends Message> implements LLMPlugin<T> { private static final ObjectMapper MAPPER = new ObjectMapper(); private static final String ENDPOINT = "https://api.openai.com/v1/chat/completions"; private final OpenAIConfig config; private final Encoding tokenEncoding; private final int tokensPerMessage; private final int tokensPerName; private URI endpoint; public OpenAIPlugin(OpenAIConfig config) { this.config = config; try { this.endpoint = new URI(ENDPOINT); } catch (URISyntaxException e) { throw new RuntimeException(e); // this should be impossible } tokenEncoding = Encodings.newDefaultEncodingRegistry() .getEncodingForModel(config.model().properties().jtokkinModel()); switch (config.model()) { case GPT4, GPT432K -> { tokensPerMessage = 3; tokensPerName = 1; } case GPT35TURBO, GPT35TURBO16K -> { tokensPerMessage = 4; // every message follows <|start|>{role/name}\n{content}<|end|>\n tokensPerName = -1; // if there's a name, the role is omitted } default -> throw new IllegalArgumentException("Unsupported model: " + config.model()); } } @TestOnly public @This OpenAIPlugin<T> endpoint(URI endpoint) { this.endpoint = endpoint; return this; } private int tokenCount(JsonNode message) { int tokenCount = tokensPerMessage; tokenCount += tokenEncoding.countTokens(message.get("content").textValue()); tokenCount += tokenEncoding.countTokens(message.get("role").textValue()); @Nullable JsonNode name = message.get("name"); if (name != null) { tokenCount += tokenEncoding.countTokens(name.textValue()); tokenCount += tokensPerName; } return tokenCount; } private Optional<ArrayNode> pruneMessages(ArrayNode messages, @Nullable JsonNode functions) throws JsonProcessingException { int functionTokens = 0; if (functions != null) { // This is honestly a guess, it's undocumented functionTokens = tokenEncoding.countTokens(MAPPER.writeValueAsString(functions)); } ArrayNode output = MAPPER.createArrayNode(); int totalTokens = functionTokens; totalTokens += 3; // every reply is primed with <|start|>assistant<|message|> JsonNode systemMessage = messages.get(0); boolean hasSystemMessage = systemMessage.get("role").textValue().equals("system"); if (hasSystemMessage) { // if the system message is present it's required totalTokens += tokenCount(messages.get(0)); } for (int i = messages.size() - 1; i >= 0; i--) { JsonNode m = messages.get(i); String role = m.get("role").textValue(); if (role.equals("system")) { continue; // system has already been counted } totalTokens += tokenCount(m); if (totalTokens > config.maxInputTokens()) { break; } output.insert(0, m); } if (hasSystemMessage) { output.insert(0, systemMessage); } if ((hasSystemMessage && output.size() <= 1) || output.isEmpty()) { return Optional.empty(); } return Optional.of(output); } @Override public T handle(ThreadState<T> threadState) throws IOException { T fromUser = threadState.tail(); ObjectNode body = MAPPER.createObjectNode(); body.put("model", config.model().properties().name()) // .put("function_call", "auto") // Update when we support functions .put("n", 1) .put("stream", false) .put("user", fromUser.senderId().toString()); config.topP().ifPresent(v -> body.put("top_p", v)); config.temperature().ifPresent(v -> body.put("temperature", v)); config.maxOutputTokens().ifPresent(v -> body.put("max_tokens", v)); config.presencePenalty().ifPresent(v -> body.put("presence_penalty", v)); config.frequencyPenalty().ifPresent(v -> body.put("frequency_penalty", v)); if (!config.logitBias().isEmpty()) { body.set("logit_bias", MAPPER.valueToTree(config.logitBias())); } if (!config.stop().isEmpty()) { body.set("stop", MAPPER.valueToTree(config.stop())); } ArrayNode messages = MAPPER.createArrayNode(); messages .addObject() .put("role", Role.SYSTEM.toString().toLowerCase()) .put("content", config.systemMessage()); for (T message : threadState.messages()) { messages .addObject() .put("role", message.role().toString().toLowerCase()) .put("content", message.message()); } Optional<ArrayNode> prunedMessages = pruneMessages(messages, null); if (prunedMessages.isEmpty()) { return threadState.newMessageFromBot( Instant.now(), "I'm sorry but that request was too long for me."); } body.set("messages", prunedMessages.get()); String bodyString; try { bodyString = MAPPER.writeValueAsString(body); } catch (JsonProcessingException e) { throw new RuntimeException(e); // this should be impossible } Response response = Request.post(endpoint) .bodyString(bodyString, ContentType.APPLICATION_JSON) .setHeader("Authorization", "Bearer " + config.apiKey()) .execute(); JsonNode responseBody = MAPPER.readTree(response.returnContent().asBytes()); Instant timestamp = Instant.ofEpochSecond(responseBody.get("created").longValue()); JsonNode choice = responseBody.get("choices").get(0); String messageContent = choice.get("message").get("content").textValue(); return threadState.newMessageFromBot(timestamp, messageContent); } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel" ]
[((1803, 1918), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel'), ((5402, 5438), 'com.meta.cp4m.message.Message.Role.SYSTEM.toString().toLowerCase'), ((5402, 5424), 'com.meta.cp4m.message.Message.Role.SYSTEM.toString'), ((6206, 6386), 'org.apache.hc.client5.http.fluent.Request.post(endpoint)\n .bodyString(bodyString, ContentType.APPLICATION_JSON)\n .setHeader("Authorization", "Bearer " + config.apiKey()).execute'), ((6206, 6363), 'org.apache.hc.client5.http.fluent.Request.post(endpoint)\n .bodyString(bodyString, ContentType.APPLICATION_JSON).setHeader'), ((6206, 6294), 'org.apache.hc.client5.http.fluent.Request.post(endpoint).bodyString')]
package com.hty.utils.ai; import com.alibaba.fastjson.JSON; import com.hty.config.OpenAIConfig; import com.hty.constant.ChatModel; import com.hty.constant.RequestURL; import com.hty.dao.ai.OpenaiChatModelMapper; import com.hty.entity.ai.ChatRequestParam; import com.hty.entity.ai.Usage; import com.hty.entity.pojo.OpenaiChatModel; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingRegistry; import com.knuddels.jtokkit.api.EncodingType; import com.knuddels.jtokkit.api.ModelType; import lombok.extern.slf4j.Slf4j; import okhttp3.*; import org.springframework.data.redis.core.StringRedisTemplate; import org.springframework.stereotype.Component; import javax.annotation.Resource; import java.io.IOException; import java.util.*; /** * @author hty * @date 2023-12-07 13:07 * @email [email protected] * @description */ @Slf4j @Component public class ChatUtil { @Resource private OkHttpClient okHttpClient; @Resource private OpenAIConfig openAIConfig; @Resource private EncodingRegistry registry; @Resource private OpenaiChatModelMapper openaiChatModelMapper; @Resource(name = "stringRedisTemplate") private StringRedisTemplate stringRedisTemplate; /*** * 一个最普通的非流式请求接口,提交问题并返回结果 * @param question * @return */ public String chat(String question,String model){ ChatRequestParam requestParam = new ChatRequestParam(); LinkedList<Map<String,String>> messages = new LinkedList<>(); Map<String,String> map = new HashMap<>(); map.put("role","user"); map.put("content",question); messages.add(map); requestParam.setMessages(messages); requestParam.setModel(model); String answer = ""; try (Response response = chat(requestParam); ResponseBody responseBody = response.body();){ if(responseBody != null){ answer = responseBody.string(); } } catch (IOException e) { log.info("请求出错 => {}",e.getMessage()); } return answer; } /*** * 问答接口 * @param requestParam * @return */ public Response chat(ChatRequestParam requestParam){ if(!checkTokenCount(requestParam)){ log.info("消息长度过长,请重新提问"); return null; } //构造请求的JSON字符串 String requestJson = constructRequestJson(requestParam); //构造请求体 RequestBody body = RequestBody.create(MediaType.parse("application/json"), requestJson); //构造请求 Request request = new Request.Builder() .url(RequestURL.RENDER_PROXY_CHAT_URL) .method("POST", body) .addHeader("Content-Type", "application/json") .addHeader("Authorization", "Bearer "+openAIConfig.apiKey) .build(); try { Response response = okHttpClient.newCall(request).execute(); // 检查响应是否成功 if (response.isSuccessful()) { return response; } else { log.error("使用OkHttp访问ChatGPT请求成功但是响应不成功,响应结果:{}",response); } } catch (IOException e) { log.error("流式请求出错 => {}",e.getMessage()); throw new RuntimeException(e); } return null; } /*** * 判断请求的token是否大于模型的token,超过长度的话就将message进行弹出 * @param requestParam * @return */ private Boolean checkTokenCount(ChatRequestParam requestParam){ Usage usage = computePromptToken(requestParam, null); OpenaiChatModel openaiChatModel = openaiChatModelMapper.selectModelByName(requestParam.getModel()); while(openaiChatModel.getMaxTokens() < usage.getPromptTokens()){ //因为会有system输入,所以当只剩下一条消息的时候说明已经没有了上下文 if(requestParam.getMessages().size() == 1) return false; //删除2遍的意思就是删除输入的同时也要删除输出 requestParam.getMessages().remove(1); requestParam.getMessages().remove(1); //重新计算token消耗 usage = computePromptToken(requestParam, null); } return true; } /** * 构造请求的请求参数 */ private String constructRequestJson(ChatRequestParam requestParam) { Map<String,Object> request = new HashMap<>(); //对于必须的字段需要增加非空判断 if(requestParam.getModel() == null || requestParam.getMessages() == null){ log.error("请求缺少参数,model => {},messages => {}",requestParam.getModel(),requestParam.getMessages()); throw new RuntimeException("请求缺少参数"); } request.put("model",requestParam.getModel()); request.put("messages",requestParam.getMessages()); if(requestParam.getTemperature() != null){ request.put("temperature",requestParam.getTemperature()); } else if(requestParam.getTopP() != null){ request.put("top_p",requestParam.getTopP()); } if(requestParam.getN() != null) request.put("n",requestParam.getN()); if(requestParam.getStream() != null) request.put("stream",requestParam.getStream()); if(requestParam.getStop() != null) request.put("stop",requestParam.getStop()); if(requestParam.getMaxTokens() != null) request.put("max_tokens",requestParam.getMaxTokens()); if(requestParam.getPresencePenalty() != null) request.put("presence_penalty",requestParam.getPresencePenalty()); if(requestParam.getFrequencyPenalty() != null) request.put("frequency_penalty",requestParam.getFrequencyPenalty()); if(requestParam.getLogitBias() != null) request.put("logit_bias",requestParam.getLogitBias()); if(requestParam.getUser() != null) request.put("user",requestParam.getUser()); log.info("构造的请求JSON => {}", JSON.toJSONString(request)); return JSON.toJSONString(request); } /*** * 向消息列表中添加用户的问题 * @param question * @param messages */ public void addUserQuestion(String question,LinkedList<Map<String, String>> messages){ Map<String,String> map = new HashMap<>(); map.put("role","user"); map.put("content",question); messages.addLast(map); } /*** * 向消息列表中添加AI的回复 * @param content * @param messages */ public void addAssistantQuestion(String content,LinkedList<Map<String, String>> messages){ Map<String,String> map = new HashMap<>(); map.put("role","assistant"); map.put("content",content); messages.addLast(map); //如果超过了4对问答就将最前面的全部删除 int n = messages.size() - 8; Iterator<Map<String, String>> iterator = messages.iterator(); if(messages.getFirst().get("role").equals("system")){ iterator.next(); n -= 1; } while(n -- > 0){ iterator.remove(); } } /*** * 使用jtokkit库来计算token消耗 * @param requestParam * @param answer * @return 返回的是一个usage对象 * * 当前统计方式中,每次都会比真实略微高一点,这样可以从中去赚取差价 */ public Usage computePromptToken(ChatRequestParam requestParam, String answer){ //获取模型对应的编码方式 Encoding encoding = registry.getEncodingForModel(ModelType.fromName(requestParam.getModel()).get()); //拼接输入,方式:将所有角色部分,content部分,model部分放入一个字符串中 StringBuilder content = new StringBuilder(); for (Map<String, String> message : requestParam.getMessages()) { content.append("role").append(message.get("role")); content.append(" "); content.append("content").append(message.get("content")); content.append(" "); } content.append("model").append(requestParam.getModel()); //使用获得到的编码方式计算token数量并设置为usage对象 Usage usage = new Usage(); usage.setPromptTokens(encoding.countTokens(content.toString())); usage.setCompletionTokens(encoding.countTokens(answer)); usage.countTotalTokens(); return usage; } /*** * 根据content计算token消耗 * @param content * @return */ public Integer computeToken(String content,String model){ //获取模型对应的编码方式 Encoding encoding = registry.getEncodingForModel(ModelType.fromName(model).get()); return encoding.countTokens(content); } /*** * 从数据库中加载所有没有过期的模型到redis中 * TODO:需要加锁 */ public void loadModelFromDatabase2Redis(){ //获取所有的聊天的model stringRedisTemplate.delete("chatModelSet"); List<OpenaiChatModel> openaiChatModelList = openaiChatModelMapper.selectAllModel(); for (OpenaiChatModel model : openaiChatModelList) { //使用set存储,方便进行containsKey操作 stringRedisTemplate.opsForHash().put("chatModelSet",model.getName(),JSON.toJSONString(model)); } //TODO:获取image生成、音频等的model } /*** * * @return 聊天模型列表 */ public List<OpenaiChatModel> getAllChatModel(){ List<OpenaiChatModel> modelList = new ArrayList<>(); //从redis中获取模型列表 List<Object> chatModelList = stringRedisTemplate.opsForHash().values("chatModelSet"); //为空就重新从数据库中加载 if (chatModelList.size() == 0){ loadModelFromDatabase2Redis(); } for (Object modelJSON : chatModelList) { modelList.add(JSON.parseObject(modelJSON.toString(),OpenaiChatModel.class)); } return modelList; } }
[ "com.knuddels.jtokkit.api.ModelType.fromName(model).get", "com.knuddels.jtokkit.api.ModelType.fromName(requestParam.getModel()).get" ]
[((7792, 7841), 'com.knuddels.jtokkit.api.ModelType.fromName(requestParam.getModel()).get'), ((8919, 8950), 'com.knuddels.jtokkit.api.ModelType.fromName(model).get')]
package com.valkryst.Valerie.gpt; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.ModelType; import lombok.Getter; import lombok.NonNull; public enum ChatGptModels { GPT_3_5_TURBO("gpt-3.5-turbo", 4096, ModelType.GPT_3_5_TURBO), GPT_4("gpt-4", 8192, ModelType.GPT_4), GPT_4_32K("gpt-4-32k", 32768, ModelType.GPT_4); /** The name of the model. */ @Getter private final String name; /** The maximum number of tokens that can be generated. */ @Getter private final int maxTokens; /** The Tiktoken encoding to use when tokenizing text for the model. */ @Getter private final Encoding encoding; /** * Constructs a new {@code ChatGptModel}. * * @param name The name of the model. * @param maxTokens The maximum number of tokens that can be generated. * @param modelType The Tiktoken model type. */ ChatGptModels(final @NonNull String name, final int maxTokens, final ModelType modelType) { this.name = name; this.maxTokens = maxTokens; encoding = Encodings.newDefaultEncodingRegistry().getEncodingForModel(modelType); } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel" ]
[((1111, 1180), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel')]
/* * * Apache License * Version 2.0, January 2004 * https://www.apache.org/licenses/ * * TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION * * 1. Definitions. * * "License" shall mean the terms and conditions for use, reproduction, * and distribution as defined by Sections 1 through 9 of this document. * * "Licensor" shall mean the copyright owner or entity authorized by * the copyright owner that is granting the License. * * "Legal Entity" shall mean the union of the acting entity and all * other entities that control, are controlled by, or are under common * control with that entity. For the purposes of this definition, * "control" means (i) the power, direct or indirect, to cause the * direction or management of such entity, whether by contract or * otherwise, or (ii) ownership of fifty percent (50%) or more of the * outstanding shares, or (iii) beneficial ownership of such entity. * * "You" (or "Your") shall mean an individual or Legal Entity * exercising permissions granted by this License. * * "Source" form shall mean the preferred form for making modifications, * including but not limited to software source code, documentation * source, and configuration files. * * "Object" form shall mean any form resulting from mechanical * transformation or translation of a Source form, including but * not limited to compiled object code, generated documentation, * and conversions to other media types. * * "Work" shall mean the work of authorship, whether in Source or * Object form, made available under the License, as indicated by a * copyright notice that is included in or attached to the work * (an example is provided in the Appendix below). * * "Derivative Works" shall mean any work, whether in Source or Object * form, that is based on (or derived from) the Work and for which the * editorial revisions, annotations, elaborations, or other modifications * represent, as a whole, an original work of authorship. For the purposes * of this License, Derivative Works shall not include works that remain * separable from, or merely link (or bind by name) to the interfaces of, * the Work and Derivative Works thereof. * * "Contribution" shall mean any work of authorship, including * the original version of the Work and any modifications or additions * to that Work or Derivative Works thereof, that is intentionally * submitted to Licensor for inclusion in the Work by the copyright owner * or by an individual or Legal Entity authorized to submit on behalf of * the copyright owner. For the purposes of this definition, "submitted" * means any form of electronic, verbal, or written communication sent * to the Licensor or its representatives, including but not limited to * communication on electronic mailing lists, source code control systems, * and issue tracking systems that are managed by, or on behalf of, the * Licensor for the purpose of discussing and improving the Work, but * excluding communication that is conspicuously marked or otherwise * designated in writing by the copyright owner as "Not a Contribution." * * "Contributor" shall mean Licensor and any individual or Legal Entity * on behalf of whom a Contribution has been received by Licensor and * subsequently incorporated within the Work. * * 2. Grant of Copyright License. Subject to the terms and conditions of * this License, each Contributor hereby grants to You a perpetual, * worldwide, non-exclusive, no-charge, royalty-free, irrevocable * copyright license to reproduce, prepare Derivative Works of, * publicly display, publicly perform, sublicense, and distribute the * Work and such Derivative Works in Source or Object form. * * 3. Grant of Patent License. Subject to the terms and conditions of * this License, each Contributor hereby grants to You a perpetual, * worldwide, non-exclusive, no-charge, royalty-free, irrevocable * (except as stated in this section) patent license to make, have made, * use, offer to sell, sell, import, and otherwise transfer the Work, * where such license applies only to those patent claims licensable * by such Contributor that are necessarily infringed by their * Contribution(s) alone or by combination of their Contribution(s) * with the Work to which such Contribution(s) was submitted. If You * institute patent litigation against any entity (including a * cross-claim or counterclaim in a lawsuit) alleging that the Work * or a Contribution incorporated within the Work constitutes direct * or contributory patent infringement, then any patent licenses * granted to You under this License for that Work shall terminate * as of the date such litigation is filed. * * 4. Redistribution. You may reproduce and distribute copies of the * Work or Derivative Works thereof in any medium, with or without * modifications, and in Source or Object form, provided that You * meet the following conditions: * * (a) You must give any other recipients of the Work or * Derivative Works a copy of this License; and * * (b) You must cause any modified files to carry prominent notices * stating that You changed the files; and * * (c) You must retain, in the Source form of any Derivative Works * that You distribute, all copyright, patent, trademark, and * attribution notices from the Source form of the Work, * excluding those notices that do not pertain to any part of * the Derivative Works; and * * (d) If the Work includes a "NOTICE" text file as part of its * distribution, then any Derivative Works that You distribute must * include a readable copy of the attribution notices contained * within such NOTICE file, excluding those notices that do not * pertain to any part of the Derivative Works, in at least one * of the following places: within a NOTICE text file distributed * as part of the Derivative Works; within the Source form or * documentation, if provided along with the Derivative Works; or, * within a display generated by the Derivative Works, if and * wherever such third-party notices normally appear. The contents * of the NOTICE file are for informational purposes only and * do not modify the License. You may add Your own attribution * notices within Derivative Works that You distribute, alongside * or as an addendum to the NOTICE text from the Work, provided * that such additional attribution notices cannot be construed * as modifying the License. * * You may add Your own copyright statement to Your modifications and * may provide additional or different license terms and conditions * for use, reproduction, or distribution of Your modifications, or * for any such Derivative Works as a whole, provided Your use, * reproduction, and distribution of the Work otherwise complies with * the conditions stated in this License. * * 5. Submission of Contributions. Unless You explicitly state otherwise, * any Contribution intentionally submitted for inclusion in the Work * by You to the Licensor shall be under the terms and conditions of * this License, without any additional terms or conditions. * Notwithstanding the above, nothing herein shall supersede or modify * the terms of any separate license agreement you may have executed * with Licensor regarding such Contributions. * * 6. Trademarks. This License does not grant permission to use the trade * names, trademarks, service marks, or product names of the Licensor, * except as required for reasonable and customary use in describing the * origin of the Work and reproducing the content of the NOTICE file. * * 7. Disclaimer of Warranty. Unless required by applicable law or * agreed to in writing, Licensor provides the Work (and each * Contributor provides its Contributions) on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied, including, without limitation, any warranties or conditions * of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A * PARTICULAR PURPOSE. You are solely responsible for determining the * appropriateness of using or redistributing the Work and assume any * risks associated with Your exercise of permissions under this License. * * 8. Limitation of Liability. In no event and under no legal theory, * whether in tort (including negligence), contract, or otherwise, * unless required by applicable law (such as deliberate and grossly * negligent acts) or agreed to in writing, shall any Contributor be * liable to You for damages, including any direct, indirect, special, * incidental, or consequential damages of any character arising as a * result of this License or out of the use or inability to use the * Work (including but not limited to damages for loss of goodwill, * work stoppage, computer failure or malfunction, or any and all * other commercial damages or losses), even if such Contributor * has been advised of the possibility of such damages. * * 9. Accepting Warranty or Additional Liability. While redistributing * the Work or Derivative Works thereof, You may choose to offer, * and charge a fee for, acceptance of support, warranty, indemnity, * or other liability obligations and/or rights consistent with this * License. However, in accepting such obligations, You may act only * on Your own behalf and on Your sole responsibility, not on behalf * of any other Contributor, and only if You agree to indemnify, * defend, and hold each Contributor harmless for any liability * incurred by, or claims asserted against, such Contributor by reason * of your accepting any such warranty or additional liability. * * END OF TERMS AND CONDITIONS * * APPENDIX: How to apply the Apache License to your work. * * To apply the Apache License to your work, attach the following * boilerplate notice, with the fields enclosed by brackets "{}" * replaced with your own identifying information. (Don't include * the brackets!) The text should be enclosed in the appropriate * comment syntax for the file format. We also recommend that a * file or class name and description of purpose be included on the * same "printed page" as the copyright notice for easier * identification within third-party archives. * * Copyright 2024 onsamepage.ai * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.samepage.common.core.helper; import cn.hutool.core.util.StrUtil; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingRegistry; import com.knuddels.jtokkit.api.EncodingType; import com.knuddels.jtokkit.api.ModelType; import lombok.experimental.UtilityClass; import java.util.Optional; /** * 封装 JTokkit 方便计算字符串 tokens */ @UtilityClass public class JTokkitHelper { private final EncodingRegistry registry = Encodings.newDefaultEncodingRegistry(); /** * 计算 token * * @param text text * @param modelType modelType * @return tokens */ public int countTokens(String text, String modelType) { Optional<ModelType> optional = ModelType.fromName(modelType); Optional<Encoding> encodingOpt; if (optional.isPresent()) { encodingOpt = registry.getEncodingForModel(modelType); } else { encodingOpt = registry.getEncoding(EncodingType.CL100K_BASE.getName()); } if (!encodingOpt.isPresent()) { throw new IllegalArgumentException(StrUtil.format("模型{}不存在", modelType)); } Encoding enc = encodingOpt.get(); if (text.contains("<|endoftext|>")) { return enc.encodeOrdinary(text).size(); } return enc.encode(text).size(); } }
[ "com.knuddels.jtokkit.api.EncodingType.CL100K_BASE.getName" ]
[((12944, 12978), 'com.knuddels.jtokkit.api.EncodingType.CL100K_BASE.getName')]
/** * Copyright 2021 Rochester Institute of Technology (RIT). Developed with * government support under contract 70RCSA22C00000008 awarded by the United * States Department of Homeland Security for Cybersecurity and Infrastructure Security Agency. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the “Software”), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ package edu.rit.se.nvip.reconciler.openai; import com.google.common.util.concurrent.RateLimiter; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.ModelType; import com.theokanning.openai.OpenAiHttpException; import com.theokanning.openai.completion.chat.ChatCompletionRequest; import com.theokanning.openai.completion.chat.ChatCompletionResult; import com.theokanning.openai.completion.chat.ChatMessage; import com.theokanning.openai.model.Model; import com.theokanning.openai.service.OpenAiService; import edu.rit.se.nvip.utils.ReconcilerEnvVars; import org.apache.logging.log4j.LogManager; import org.apache.logging.log4j.Logger; import java.util.List; import java.util.Optional; import java.util.concurrent.*; /** * Make all chat completion requests through here. If other types of OpenAI requests become necessary, they should be implemented in here so that the rate limit resource is appropriately shared. */ public class OpenAIRequestHandler { private final Logger logger = LogManager.getLogger(getClass().getSimpleName()); private final PriorityBlockingQueue<RequestWrapper> requestQueue = new PriorityBlockingQueue<>(1000); private ExecutorService mainExecutor = Executors.newFixedThreadPool(1); private ExecutorService requestExecutor = Executors.newFixedThreadPool(5); private static OpenAIRequestHandler handler; //https://platform.openai.com/account/rate-limits private static final ModelType DEFAULT_CHAT_COMPLETION_MODEL = ModelType.GPT_3_5_TURBO; private final static double TOKEN_RATE_LIMIT = 90000. / 60; private final static double REQUEST_RATE_LIMIT = 3500. /60; private final RateLimiter tokenLimiter = RateLimiter.create(TOKEN_RATE_LIMIT); private final RateLimiter requestLimiter = RateLimiter.create(REQUEST_RATE_LIMIT); private OpenAiService service; private int nextPriorityId = 0; private Future<?> handlerThreadFuture; // used to eventually cancel the request thread static { handler = new OpenAIRequestHandler(); } private OpenAIRequestHandler() { service = new OpenAiService(ReconcilerEnvVars.getOpenAIKey()); initExecutors(); } /** * shuts down internal executors and threads. Already sent requests will still be fulfilled, */ public void shutdown() { //the handleRequests() thread will probably be waiting on a queue.take() handlerThreadFuture.cancel(true); // cancelling the future cancels the task mainExecutor.shutdown(); // should go right through requestExecutor.shutdown(); // lets the request threads finish execution } private void initExecutors() { this.mainExecutor = Executors.newFixedThreadPool(1); this.handlerThreadFuture = this.mainExecutor.submit(this::handleRequests); this.requestExecutor = Executors.newFixedThreadPool(5); } /** * makes new executors and starts processing requests again */ public void start() { if (!mainExecutor.isShutdown() || !requestExecutor.isShutdown()) { return; } initExecutors(); } /** * This class does not allow a public constructor because it must remain a singleton in order to guarantee respect for rate limits * @return the singleton OpenAIRequestHandler() */ public static OpenAIRequestHandler getInstance() { if (handler == null) { handler = new OpenAIRequestHandler(); } return handler; } private void handleRequests() { while (true) { RequestWrapper wrapper; try { wrapper = requestQueue.take(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); return; } waitForLimiters(chatCompletionTokenCount(wrapper.request)); requestExecutor.submit(() -> sendRequest(wrapper)); } } private void sendRequest(RequestWrapper requestWrapper) { try { logger.info("sending msg"); ChatCompletionResult res = service.createChatCompletion(requestWrapper.request); logger.info("sent"); requestWrapper.futureResult.complete(res); } catch (OpenAiHttpException e) { Thread.currentThread().interrupt(); requestWrapper.futureResult.completeExceptionally(e); //todo properly handle this } } /** * Sets the OpenAiService to request chat completions through. Set this to a mock when testing. * @param service */ public void setService(OpenAiService service) { // dependency injection allows easier testing this.service = service; } /** * Makes a no-cost call to openAI to verify the connection * @return true if connected */ public boolean testConnection() { // the listModels() includes an API call to account for any fine-tuned models, so this effectively validates the key and connection without actually using any tokens try { List<Model> models = service.listModels(); return models.size() > 0; } catch (Exception ex) { logger.error("Could not connect to OpenAI. Check your internet connection or key"); } return false; } /** * Queues the request for sending * @param request the chat completion request in need of handling * @return a future object which will be populated when the rate limiters and priority allow */ public Future<ChatCompletionResult> createChatCompletion(ChatCompletionRequest request, RequestorIdentity requestor) { CompletableFuture<ChatCompletionResult> future = new CompletableFuture<>(); RequestWrapper wrapper = new RequestWrapper(request, future, requestor, nextPriorityId++); // drop the request in the queue and tell any concerned threads about it requestQueue.put(wrapper); return future; } /** * Computes the number of tokens this request would use if sent. This method does not make any API calls. * @param request the completion request in question * @return the number of tokens that will be used (not counting return tokens) */ public int chatCompletionTokenCount(ChatCompletionRequest request) { Optional<Encoding> optEnc = Encodings.newDefaultEncodingRegistry().getEncodingForModel(request.getModel()); Encoding enc = optEnc.orElseGet(() -> Encodings.newDefaultEncodingRegistry().getEncodingForModel(DEFAULT_CHAT_COMPLETION_MODEL)); return chatCompletionTokenCount(request.getMessages(), enc); } /** * Computes the number of tokens this request would use if sent with the given messages. This method does not make any API calls * @param messages a list of ChatMessages to be tokenized * @param enc the encoding to use for tokenization * @return the number of tokens that would be used in an API call (not counting return tokens) */ public int chatCompletionTokenCount(List<ChatMessage> messages, Encoding enc) { // this is not as simple as just tokenizing the openAI query because that query goes through some further processing on their end, adding tokens // numbers gotten from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb int tokensPerMsg = 4; int tokenCount = 0; for (ChatMessage msg : messages) { tokenCount += tokensPerMsg; tokenCount += enc.encode(msg.getContent()).size(); tokenCount += enc.encode(msg.getRole()).size(); } return tokenCount; } private void waitForLimiters(int tokens) { tokenLimiter.acquire(tokens); requestLimiter.acquire(1); } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel" ]
[((7749, 7827), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel'), ((7875, 7964), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel')]
package com.knuddels.jtokkit; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingRegistry; import com.knuddels.jtokkit.api.EncodingType; import com.knuddels.jtokkit.api.GptBytePairEncodingParams; import com.knuddels.jtokkit.api.ModelType; import java.util.Objects; import java.util.Optional; import java.util.concurrent.ConcurrentHashMap; abstract class AbstractEncodingRegistry implements EncodingRegistry { private final ConcurrentHashMap<String, Encoding> encodings = new ConcurrentHashMap<>(); @Override public Optional<Encoding> getEncoding(final String encodingName) { return Optional.ofNullable(encodings.get(encodingName)); } @Override public Encoding getEncoding(final EncodingType encodingType) { return Objects.requireNonNull( encodings.get(encodingType.getName()), () -> "No encoding registered for encoding type " + encodingType.getName() ); } @Override public Optional<Encoding> getEncodingForModel(final String modelName) { final Optional<ModelType> modelType = ModelType.fromName(modelName); if (modelType.isPresent()) { return Optional.of(getEncodingForModel(modelType.get())); } if (modelName.startsWith(ModelType.GPT_4_32K.getName())) { return Optional.of(getEncodingForModel(ModelType.GPT_4_32K)); } if (modelName.startsWith(ModelType.GPT_4.getName())) { return Optional.of(getEncodingForModel(ModelType.GPT_4)); } if (modelName.startsWith(ModelType.GPT_3_5_TURBO_16K.getName())) { return Optional.of(getEncodingForModel(ModelType.GPT_3_5_TURBO_16K)); } if (modelName.startsWith(ModelType.GPT_3_5_TURBO.getName())) { return Optional.of(getEncodingForModel(ModelType.GPT_3_5_TURBO)); } return Optional.empty(); } @Override public Encoding getEncodingForModel(final ModelType modelType) { return Objects.requireNonNull( encodings.get(modelType.getEncodingType().getName()), () -> "No encoding registered for model type " + modelType.getName() ); } @Override public EncodingRegistry registerGptBytePairEncoding(final GptBytePairEncodingParams parameters) { return registerCustomEncoding(EncodingFactory.fromParameters(parameters)); } @Override public EncodingRegistry registerCustomEncoding(final Encoding encoding) { final String encodingName = encoding.getName(); final Encoding previousEncoding = encodings.putIfAbsent(encodingName, encoding); if (previousEncoding != null) { throw new IllegalStateException("Encoding " + encodingName + " already registered"); } return this; } protected final void addEncoding(final EncodingType encodingType) { switch (encodingType) { case R50K_BASE: encodings.computeIfAbsent(encodingType.getName(), k -> EncodingFactory.r50kBase()); break; case P50K_BASE: encodings.computeIfAbsent(encodingType.getName(), k -> EncodingFactory.p50kBase()); break; case P50K_EDIT: encodings.computeIfAbsent(encodingType.getName(), k -> EncodingFactory.p50kEdit()); break; case CL100K_BASE: encodings.computeIfAbsent(encodingType.getName(), k -> EncodingFactory.cl100kBase()); break; default: throw new IllegalStateException("Unknown encoding type " + encodingType.getName()); } } }
[ "com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO.getName", "com.knuddels.jtokkit.api.ModelType.GPT_4_32K.getName", "com.knuddels.jtokkit.api.ModelType.GPT_4.getName", "com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName" ]
[((1295, 1324), 'com.knuddels.jtokkit.api.ModelType.GPT_4_32K.getName'), ((1447, 1472), 'com.knuddels.jtokkit.api.ModelType.GPT_4.getName'), ((1591, 1628), 'com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO_16K.getName'), ((1759, 1792), 'com.knuddels.jtokkit.api.ModelType.GPT_3_5_TURBO.getName')]
/* * Copyright DataStax, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.langstream.agents.text; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingRegistry; import com.knuddels.jtokkit.api.EncodingType; /** Java implementation of <a href="https://github.com/openai/tiktoken">tiktoken</a>. */ public class TiktokenLengthFunction implements LengthFunction { private static final EncodingRegistry REGISTRY = Encodings.newDefaultEncodingRegistry(); private final EncodingType encodingType; public TiktokenLengthFunction(String encoding) { encodingType = EncodingType.fromName(encoding) .orElseThrow( () -> new IllegalArgumentException( "Unknown encoding: " + encoding)); } @Override public int length(String text) { // Encoding is stateful and it retains references to internal tokens Encoding enc = REGISTRY.getEncoding(encodingType); return enc.countTokens(text); } }
[ "com.knuddels.jtokkit.api.EncodingType.fromName(encoding).orElseThrow" ]
[((1188, 1447), 'com.knuddels.jtokkit.api.EncodingType.fromName(encoding).orElseThrow')]
package com.abin.mallchat.common.chatai.utils; import com.abin.mallchat.common.chatai.domain.ChatGPTMsg; import com.abin.mallchat.common.common.exception.BusinessException; import com.abin.mallchat.utils.JsonUtils; import com.fasterxml.jackson.databind.JsonNode; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingType; import lombok.SneakyThrows; import lombok.extern.slf4j.Slf4j; import okhttp3.*; import org.apache.commons.lang3.StringUtils; import java.io.IOException; import java.util.*; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; @Slf4j public class ChatGPTUtils { private static final Encoding encoding = Encodings.newDefaultEncodingRegistry().getEncoding(EncodingType.CL100K_BASE); private static final String URL = "https://api.openai.com/v1/chat/completions"; private String model = "gpt-3.5-turbo"; private final Map<String, String> headers; /** * 超时30秒 */ private Integer timeout = -1; /** * 参数用于指定生成文本的最大长度。 * 它表示生成的文本中最多包含多少个 token。一个 token 可以是一个单词、一个标点符号或一个空格。 */ private int maxTokens = 2048; /** * 用于控制生成文本的多样性。 * 较高的温度会导致更多的随机性和多样性,但可能会降低生成文本的质量。默认值为 1,建议在 0.7 到 1.3 之间调整。 */ private Object temperature = 1; /** * 用于控制生成文本的多样性。 * 它会根据概率选择最高的几个单词,而不是选择概率最高的单词。默认值为 1,建议在 0.7 到 0.9 之间调整。 */ private Object topP = 0.9; /** * 用于控制生成文本中重复单词的数量。 * 较高的惩罚值会导致更少的重复单词,但可能会降低生成文本的流畅性。默认值为 0,建议在 0 到 2 之间调整。 */ private Object frequencyPenalty = 0.0; /** * 用于控制生成文本中出现特定单词的数量。 * 较高的惩罚值会导致更少的特定单词,但可能会降低生成文本的流畅性。默认值为 0,建议在 0 到 2 之间调整。 */ private Object presencePenalty = 0.6; /** * 提示词 */ private List<ChatGPTMsg> messages; // private List<ChatGPTMsg> prompt; private String proxyUrl; public ChatGPTUtils(String key) { HashMap<String, String> _headers_ = new HashMap<>(); _headers_.put("Content-Type", "application/json"); if (StringUtils.isBlank(key)) { throw new BusinessException("openAi key is blank"); } _headers_.put("Authorization", "Bearer " + key); this.headers = _headers_; } public static ChatGPTUtils create(String key) { return new ChatGPTUtils(key); } @SneakyThrows public static String parseText(Response response) { return parseText(response.body().string()); } public static String parseText(String body) { // log.info("body >>> " + body); try { return Arrays.stream(body.split("data:")) .map(String::trim) .filter(x -> StringUtils.isNotBlank(x) && !"[DONE]".endsWith(x)) .map(x -> Optional.ofNullable( JsonUtils.toJsonNode(x) .withArray("choices") .get(0) .with("delta") .findValue("content")) .map(JsonNode::asText) .orElse(null) ).filter(Objects::nonNull).collect(Collectors.joining()); } catch (Exception e) { log.error("parseText error e:", e); return "闹脾气了,等会再试试吧~"; } } public ChatGPTUtils model(String model) { this.model = model; return this; } public ChatGPTUtils timeout(int timeout) { this.timeout = timeout; return this; } public ChatGPTUtils maxTokens(int maxTokens) { this.maxTokens = maxTokens; return this; } public ChatGPTUtils temperature(int temperature) { this.temperature = temperature; return this; } public ChatGPTUtils topP(int topP) { this.topP = topP; return this; } public ChatGPTUtils frequencyPenalty(int frequencyPenalty) { this.frequencyPenalty = frequencyPenalty; return this; } public ChatGPTUtils presencePenalty(int presencePenalty) { this.presencePenalty = presencePenalty; return this; } public ChatGPTUtils message(List<ChatGPTMsg> messages) { this.messages = messages; return this; } public ChatGPTUtils proxyUrl(String proxyUrl) { this.proxyUrl = proxyUrl; return this; } public Response send() throws IOException { OkHttpClient okHttpClient = new OkHttpClient() .newBuilder() .connectTimeout(10, TimeUnit.SECONDS) .writeTimeout(10, TimeUnit.SECONDS) .readTimeout(60, TimeUnit.SECONDS) .build(); Map<String, Object> paramMap = new HashMap<>(); paramMap.put("model", model); paramMap.put("messages", messages); paramMap.put("max_tokens", maxTokens); paramMap.put("temperature", temperature); paramMap.put("top_p", topP); paramMap.put("frequency_penalty", frequencyPenalty); paramMap.put("presence_penalty", presencePenalty); paramMap.put("stream", true); log.info("paramMap >>> " + JsonUtils.toStr(paramMap)); Request request = new Request.Builder() .url(StringUtils.isNotBlank(proxyUrl) ? proxyUrl : URL) .addHeader("Content-Type", "application/json") .addHeader("Authorization", headers.get("Authorization")) .post(RequestBody.create(MediaType.parse("application/json"), JsonUtils.toStr(paramMap))) .build(); return okHttpClient.newCall(request).execute(); } public static Integer countTokens(String messages) { return encoding.countTokens(messages); } public static Integer countTokens(List<ChatGPTMsg> msg) { return countTokens(JsonUtils.toStr(msg)); } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding" ]
[((721, 797), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding'), ((3447, 3681), 'com.abin.mallchat.utils.JsonUtils.toJsonNode(x)\n .withArray("choices")\n .get(0)\n .with("delta").findValue'), ((3447, 3623), 'com.abin.mallchat.utils.JsonUtils.toJsonNode(x)\n .withArray("choices")\n .get(0).with'), ((3447, 3572), 'com.abin.mallchat.utils.JsonUtils.toJsonNode(x)\n .withArray("choices").get'), ((3447, 3528), 'com.abin.mallchat.utils.JsonUtils.toJsonNode(x).withArray')]
package com.gzhu.funai.api.openai; import cn.hutool.http.ContentType; import cn.hutool.json.JSONUtil; import com.alibaba.fastjson.JSON; import com.gzhu.funai.api.openai.constant.OpenAIConst; import com.gzhu.funai.api.openai.enums.OpenAiRespError; import com.gzhu.funai.api.openai.req.ChatGPTReq; import com.gzhu.funai.api.openai.req.EmbeddingReq; import com.gzhu.funai.api.openai.resp.BillingUsage; import com.gzhu.funai.api.openai.resp.ChatGPTResp; import com.gzhu.funai.api.openai.resp.EmbeddingResp; import com.gzhu.funai.api.openai.resp.CreditGrantsResp; import com.gzhu.funai.exception.BaseException; import com.gzhu.funai.global.constant.GlobalConstant; import com.gzhu.funai.utils.DateTimeFormatterUtil; import com.gzhu.funai.utils.OkHttpClientUtil; import com.gzhu.funai.utils.ResultCode; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingType; import lombok.extern.slf4j.Slf4j; import okhttp3.*; import okhttp3.sse.EventSource; import okhttp3.sse.EventSourceListener; import okhttp3.sse.EventSources; import java.io.IOException; import java.math.BigDecimal; import java.math.RoundingMode; import java.time.Instant; import java.time.LocalDate; import java.time.ZoneId; import java.util.List; import java.util.Map; import java.util.Objects; /** * @Author: huangpenglong * @Date: 2023/3/9 10:57 */ @Slf4j public class ChatGPTApi{ private static final String AUTHORIZATION_STR = "Authorization"; private static Encoding enc; static { enc = Encodings.newDefaultEncodingRegistry().getEncoding(EncodingType.CL100K_BASE); } /** * 一次对话 * @param gpt * @param apiKey * @return */ public static ChatGPTResp oneShotReq(ChatGPTReq gpt, String apiKey){ return sessionReq(gpt, apiKey); } /** * 带上下文的对话 * Ps:之前使用hutool的HttpRequest写请求,但遇到了handshake_failure 错误。目前换成了OKHttp * @param gpt * @param apiKey * @return */ public static ChatGPTResp sessionReq(ChatGPTReq gpt, String apiKey) { Request request = new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.CHATGPT_MAPPING) .post(RequestBody.create(MediaType.parse(ContentType.JSON.getValue()), JSONUtil.parseObj(gpt).toString())) .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build(); Response response = null; try { response = OkHttpClientUtil.getClient().newCall(request).execute(); if(!response.isSuccessful()){ OpenAiRespError openAiRespError = OpenAiRespError.get(response.code()); log.error("请求ChatGPT异常! {}", openAiRespError.msg); throw new BaseException(openAiRespError.msg); } String body = response.body().string(); return JSONUtil.toBean(body, ChatGPTResp.class); } catch (IOException e) { log.error("okHttpClient异常! {}", e.getMessage()); } finally { if(response != null){ response.close(); } } return null; } /** * 查询apiKey的余额 * Ps:之前使用hutool的HttpRequest写请求,但遇到了handshake_failure 错误。目前换成了OKHttp * @param apiKey * @return */ public static CreditGrantsResp creditGrants(String apiKey){ Request request = new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.CREDIT_GRANTS_MAPPING) .get() .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build(); Response response = null; try { response = OkHttpClientUtil.getClient().newCall(request).execute(); if(!response.isSuccessful()){ OpenAiRespError openAiRespError = OpenAiRespError.get(response.code()); log.error("请求ChatGPT异常! {}", openAiRespError.msg); throw new BaseException(openAiRespError.msg); } String body = response.body().string(); log.info("{}调用查询余额请求,返回值:{}",apiKey, body); return JSONUtil.toBean(body, CreditGrantsResp.class); } catch (IOException e) { log.error("okHttpClient异常! {}", e.getMessage()); } finally { if(response != null){ response.close(); } } return null; } /** * 以流式输出的方式进行多轮对话 * @param chatGPTReq * @param apiKey * @param eventSourceListener */ public static void streamSessionReq(ChatGPTReq chatGPTReq, String apiKey, EventSourceListener eventSourceListener){ if (Objects.isNull(eventSourceListener)) { log.error("参数异常:EventSourceListener不能为空"); throw new BaseException(ResultCode.EMPTY_PARAM.msg); } try { EventSource.Factory factory = EventSources.createFactory(OkHttpClientUtil.getClient()); String requestBody = JSONUtil.parseObj(chatGPTReq).toString(); Request request = new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.CHATGPT_MAPPING) .post(RequestBody.create(MediaType.parse(ContentType.JSON.getValue()), requestBody)) .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build(); // 绑定请求 和 事件监听器 factory.newEventSource(request, eventSourceListener); } catch (Exception e) { log.error("请求参数解析异常:{}", e); } } /** * 文本编码 * @param input * @param apiKey * @return */ public static EmbeddingResp embeddings(List<String> input, String apiKey){ EmbeddingReq embeddingReq = EmbeddingReq.builder().input(input).build(); Request request = new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.EMBEDDING_MAPPING) .post(RequestBody.create(MediaType.parse(ContentType.JSON.getValue()), JSONUtil.parseObj(embeddingReq).toString())) .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build(); Response response = null; try { response = OkHttpClientUtil.getClient().newCall(request).execute(); if(!response.isSuccessful()){ OpenAiRespError openAiRespError = OpenAiRespError.get(response.code()); log.error("Embedding异常! {}", openAiRespError.msg); throw new BaseException(openAiRespError.msg); } String body = response.body().string(); return JSONUtil.toBean(body, EmbeddingResp.class); } catch (IOException e) { log.error("okHttpClient异常! {}", e.getMessage()); } finally { if(response != null){ response.close(); } } return null; } /** * 估计字符串占多少个token * @param message * @return */ public static int getTokenNum(String message){ return enc.encode(message).size(); } /** * 估计一轮上下文对话占多少个token * @param message * @return */ public static int getMessageTokenNum(String message){ return enc.encode("role: {user}, message: {" + message + "}").size(); } /** * 获取apiKey的额度信息 * @param apiKey * @return */ public static BillingUsage getBillingUsage(String apiKey){ Response subResponse = null; Response usageResponse = null; try { subResponse = OkHttpClientUtil.getClient() .newCall( new Request.Builder() .url(OpenAIConst.HOST + OpenAIConst.SUBSCRIPTION_MAPPING) .get() .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build()) .execute(); // openai请求错误 if(!subResponse.isSuccessful()){ OpenAiRespError openAiRespError = OpenAiRespError.get(subResponse.code()); log.error("请求ChatGPT异常! {}", openAiRespError.msg); throw new BaseException(openAiRespError.msg); } // 判断账号是否过期 Map subMap = JSON.parseObject(subResponse.body().string(), Map.class); long accessUntil = Long.parseLong(String.valueOf(subMap.get("access_until"))); if(accessUntil * GlobalConstant.TEN_K < System.currentTimeMillis()){ log.warn("检查到apiKey:{}过期,过期时间{}", apiKey, Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone(ZoneId.systemDefault()).toLocalDate()); // 不抛异常,因为特殊的apiKey过期了还能使用 // throw new BaseException(OpenAiRespError.OPENAI_APIKEY_EXPIRED.code, OpenAiRespError.OPENAI_APIKEY_EXPIRED.msg); } // 获取总额度 BigDecimal totalAmount = BigDecimal.valueOf(Double.parseDouble(String.valueOf(subMap.get("hard_limit_usd")))); // 获取已使用额度 (滑动日期窗口获取,因为该死的openai一次只能拿100天的使用额度) BigDecimal totalUsage = new BigDecimal(0); LocalDate startDate = LocalDate.now().minusDays(95); LocalDate endDate = LocalDate.now().plusDays(1); while(true){ // 查询日期范围内的使用额度 String usageUrl = OpenAIConst.HOST + String.format( OpenAIConst.USAGE_MAPPING, DateTimeFormatterUtil.DFT.format(startDate), DateTimeFormatterUtil.DFT.format(endDate)); usageResponse = OkHttpClientUtil.getClient() .newCall(new Request.Builder() .url(usageUrl) .get() .header(AUTHORIZATION_STR, "Bearer " + apiKey) .build()) .execute(); Map usageMap = JSON.parseObject(usageResponse.body().string(), Map.class); BigDecimal curUsage = BigDecimal.valueOf(Double.parseDouble(String.valueOf(usageMap.get("total_usage")))); // 当在某次范围内查出的使用额度为0,说明此前长时间没使用过 if(curUsage.compareTo(BigDecimal.ZERO) <= 0){ break; } // 累加使用额度 totalUsage = totalUsage.add(curUsage); // 统计日期窗口向前滑动 endDate = startDate; startDate = endDate.minusDays(95); } return new BillingUsage( totalAmount, totalUsage.divide(new BigDecimal("100"), 2, RoundingMode.HALF_UP), Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone(ZoneId.systemDefault()).toLocalDate()); } catch (IOException e) { log.error("okHttpClient异常! {}", e.getMessage()); } finally { if(subResponse != null){ subResponse.close(); } if(usageResponse != null){ usageResponse.close(); } } return null; } private ChatGPTApi(){} }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding" ]
[((1543, 1619), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding'), ((2303, 2330), 'cn.hutool.http.ContentType.JSON.getValue'), ((2333, 2366), 'cn.hutool.json.JSONUtil.parseObj(gpt).toString'), ((2529, 2584), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall(request).execute'), ((2529, 2574), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((3809, 3864), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall(request).execute'), ((3809, 3854), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((5218, 5258), 'cn.hutool.json.JSONUtil.parseObj(chatGPTReq).toString'), ((5446, 5473), 'cn.hutool.http.ContentType.JSON.getValue'), ((6027, 6070), 'com.gzhu.funai.api.openai.req.EmbeddingReq.builder().input(input).build'), ((6027, 6062), 'com.gzhu.funai.api.openai.req.EmbeddingReq.builder().input'), ((6248, 6275), 'cn.hutool.http.ContentType.JSON.getValue'), ((6278, 6320), 'cn.hutool.json.JSONUtil.parseObj(embeddingReq).toString'), ((6483, 6538), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall(request).execute'), ((6483, 6528), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((7899, 8252), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient()\n .newCall(\n new Request.Builder()\n .url(OpenAIConst.HOST + OpenAIConst.SUBSCRIPTION_MAPPING)\n .get()\n .header(AUTHORIZATION_STR, "Bearer " + apiKey)\n .build()).execute'), ((7899, 8221), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((8976, 9077), 'java.time.Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone(ZoneId.systemDefault()).toLocalDate'), ((8976, 9063), 'java.time.Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone'), ((9673, 9702), 'java.time.LocalDate.now().minusDays'), ((9736, 9763), 'java.time.LocalDate.now().plusDays'), ((9989, 10032), 'com.gzhu.funai.utils.DateTimeFormatterUtil.DFT.format'), ((10058, 10099), 'com.gzhu.funai.utils.DateTimeFormatterUtil.DFT.format'), ((10134, 10459), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient()\n .newCall(new Request.Builder()\n .url(usageUrl)\n .get()\n .header(AUTHORIZATION_STR, "Bearer " + apiKey)\n .build()).execute'), ((10134, 10424), 'com.gzhu.funai.utils.OkHttpClientUtil.getClient().newCall'), ((11310, 11411), 'java.time.Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone(ZoneId.systemDefault()).toLocalDate'), ((11310, 11397), 'java.time.Instant.ofEpochMilli(accessUntil * GlobalConstant.TEN_K).atZone')]
package com.abin.mallchat.common.chatai.utils; import com.abin.mallchat.common.chatai.domain.ChatGPTMsg; import com.abin.mallchat.common.common.exception.BusinessException; import com.abin.mallchat.utils.JsonUtils; import com.fasterxml.jackson.databind.JsonNode; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingType; import lombok.SneakyThrows; import lombok.extern.slf4j.Slf4j; import okhttp3.*; import org.apache.commons.lang3.StringUtils; import java.io.IOException; import java.util.*; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; @Slf4j public class ChatGPTUtils { private static final Encoding encoding = Encodings.newDefaultEncodingRegistry().getEncoding(EncodingType.CL100K_BASE); private static final String URL = "https://api.openai.com/v1/chat/completions"; private String model = "gpt-3.5-turbo"; private final Map<String, String> headers; /** * 超时30秒 */ private Integer timeout = -1; /** * 参数用于指定生成文本的最大长度。 * 它表示生成的文本中最多包含多少个 token。一个 token 可以是一个单词、一个标点符号或一个空格。 */ private int maxTokens = 2048; /** * 用于控制生成文本的多样性。 * 较高的温度会导致更多的随机性和多样性,但可能会降低生成文本的质量。默认值为 1,建议在 0.7 到 1.3 之间调整。 */ private Object temperature = 1; /** * 用于控制生成文本的多样性。 * 它会根据概率选择最高的几个单词,而不是选择概率最高的单词。默认值为 1,建议在 0.7 到 0.9 之间调整。 */ private Object topP = 0.9; /** * 用于控制生成文本中重复单词的数量。 * 较高的惩罚值会导致更少的重复单词,但可能会降低生成文本的流畅性。默认值为 0,建议在 0 到 2 之间调整。 */ private Object frequencyPenalty = 0.0; /** * 用于控制生成文本中出现特定单词的数量。 * 较高的惩罚值会导致更少的特定单词,但可能会降低生成文本的流畅性。默认值为 0,建议在 0 到 2 之间调整。 */ private Object presencePenalty = 0.6; /** * 提示词 */ private List<ChatGPTMsg> messages; // private List<ChatGPTMsg> prompt; private String proxyUrl; public ChatGPTUtils(String key) { HashMap<String, String> _headers_ = new HashMap<>(); _headers_.put("Content-Type", "application/json"); if (StringUtils.isBlank(key)) { throw new BusinessException("openAi key is blank"); } _headers_.put("Authorization", "Bearer " + key); this.headers = _headers_; } public static ChatGPTUtils create(String key) { return new ChatGPTUtils(key); } @SneakyThrows public static String parseText(Response response) { return parseText(response.body().string()); } public static String parseText(String body) { // log.info("body >>> " + body); try { return Arrays.stream(body.split("data:")) .map(String::trim) .filter(x -> StringUtils.isNotBlank(x) && !"[DONE]".endsWith(x)) .map(x -> Optional.ofNullable( JsonUtils.toJsonNode(x) .withArray("choices") .get(0) .with("delta") .findValue("content")) .map(JsonNode::asText) .orElse(null) ).filter(Objects::nonNull).collect(Collectors.joining()); } catch (Exception e) { log.error("parseText error e:", e); return "闹脾气了,等会再试试吧~"; } } public ChatGPTUtils model(String model) { this.model = model; return this; } public ChatGPTUtils timeout(int timeout) { this.timeout = timeout; return this; } public ChatGPTUtils maxTokens(int maxTokens) { this.maxTokens = maxTokens; return this; } public ChatGPTUtils temperature(int temperature) { this.temperature = temperature; return this; } public ChatGPTUtils topP(int topP) { this.topP = topP; return this; } public ChatGPTUtils frequencyPenalty(int frequencyPenalty) { this.frequencyPenalty = frequencyPenalty; return this; } public ChatGPTUtils presencePenalty(int presencePenalty) { this.presencePenalty = presencePenalty; return this; } public ChatGPTUtils message(List<ChatGPTMsg> messages) { this.messages = messages; return this; } public ChatGPTUtils proxyUrl(String proxyUrl) { this.proxyUrl = proxyUrl; return this; } public Response send() throws IOException { OkHttpClient okHttpClient = new OkHttpClient() .newBuilder() .connectTimeout(10, TimeUnit.SECONDS) .writeTimeout(10, TimeUnit.SECONDS) .readTimeout(60, TimeUnit.SECONDS) .build(); Map<String, Object> paramMap = new HashMap<>(); paramMap.put("model", model); paramMap.put("messages", messages); paramMap.put("max_tokens", maxTokens); paramMap.put("temperature", temperature); paramMap.put("top_p", topP); paramMap.put("frequency_penalty", frequencyPenalty); paramMap.put("presence_penalty", presencePenalty); paramMap.put("stream", true); log.info("paramMap >>> " + JsonUtils.toStr(paramMap)); Request request = new Request.Builder() .url(StringUtils.isNotBlank(proxyUrl) ? proxyUrl : URL) .addHeader("Content-Type", "application/json") .addHeader("Authorization", headers.get("Authorization")) .post(RequestBody.create(MediaType.parse("application/json"), JsonUtils.toStr(paramMap))) .build(); return okHttpClient.newCall(request).execute(); } public static Integer countTokens(String messages) { return encoding.countTokens(messages); } public static Integer countTokens(List<ChatGPTMsg> msg) { return countTokens(JsonUtils.toStr(msg)); } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding" ]
[((721, 797), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding'), ((3447, 3681), 'com.abin.mallchat.utils.JsonUtils.toJsonNode(x)\n .withArray("choices")\n .get(0)\n .with("delta").findValue'), ((3447, 3623), 'com.abin.mallchat.utils.JsonUtils.toJsonNode(x)\n .withArray("choices")\n .get(0).with'), ((3447, 3572), 'com.abin.mallchat.utils.JsonUtils.toJsonNode(x)\n .withArray("choices").get'), ((3447, 3528), 'com.abin.mallchat.utils.JsonUtils.toJsonNode(x).withArray')]
package com.knuddels.jtokkit; import com.knuddels.jtokkit.api.Encoding; import com.knuddels.jtokkit.api.EncodingRegistry; import com.knuddels.jtokkit.api.EncodingType; import com.knuddels.jtokkit.api.ModelType; import java.util.Optional; /** * A lazy initialization implementation of {@link EncodingRegistry}. It does not register any encoding until either the * {@link #getEncoding(EncodingType)} or {@link #getEncoding(String)} method is called. * When one of these methods is called, the requested {@link EncodingType} is registered. */ final class LazyEncodingRegistry extends AbstractEncodingRegistry { @Override public Encoding getEncoding(final EncodingType encodingType) { addEncoding(encodingType); return super.getEncoding(encodingType); } @Override public Optional<Encoding> getEncoding(final String encodingName) { EncodingType.fromName(encodingName).ifPresent(this::addEncoding); return super.getEncoding(encodingName); } @Override public Encoding getEncodingForModel(final ModelType modelType) { addEncoding(modelType.getEncodingType()); return super.getEncodingForModel(modelType); } }
[ "com.knuddels.jtokkit.api.EncodingType.fromName(encodingName).ifPresent" ]
[((881, 945), 'com.knuddels.jtokkit.api.EncodingType.fromName(encodingName).ifPresent')]
package com.datasqrl.ai; import com.datasqrl.ai.api.GraphQLExecutor; import com.datasqrl.ai.backend.APIChatBackend; import com.datasqrl.ai.backend.AnnotatedChatMessage; import com.datasqrl.ai.backend.MessageTruncator; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.ModelType; import com.theokanning.openai.completion.chat.ChatCompletionChunk; import com.theokanning.openai.completion.chat.ChatCompletionRequest; import com.theokanning.openai.completion.chat.ChatFunctionCall; import com.theokanning.openai.completion.chat.ChatMessage; import com.theokanning.openai.completion.chat.ChatMessageRole; import com.theokanning.openai.service.OpenAiService; import io.reactivex.Flowable; import java.nio.file.Path; import java.time.Duration; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Scanner; import java.util.concurrent.atomic.AtomicBoolean; import java.util.stream.Collectors; import lombok.Value; /** * A simple streaming chatbot for the command line. * The implementation uses OpenAI's GPT models with a default configuration * and {@link APIChatBackend} to call APIs that pull in requested data * as well as save and restore chat messages across sessions. * * This implementation is based on <a href="https://github.com/TheoKanning/openai-java/blob/main/example/src/main/java/example/OpenAiApiFunctionsWithStreamExample.java">https://github.com/TheoKanning/openai-java</a> * and meant only for demonstration and testing. * * To run the main method, you need to set your OPENAI token as an environment variable. * The main method expects the name of an {@link Examples} value. */ @Value public class CmdLineChatBot { OpenAiService service; APIChatBackend backend; ChatModel chatModel = ChatModel.GPT35_TURBO; List<ChatMessage> messages = new ArrayList<>(); /** * Initializes a command line chat bot * * @param openAIKey The OpenAI API key to call the API * @param backend An initialized backend to use for function execution and chat message persistence */ public CmdLineChatBot(String openAIKey, APIChatBackend backend) { service = new OpenAiService(openAIKey, Duration.ofSeconds(60)); this.backend = backend; } /** * Starts the chatbot on the command line which will accepts questions and produce responses. * Type "exit" to terminate. * * @param instructionMessage The system instruction message for the ChatBot */ public void start(String instructionMessage, Map<String, Object> context) { Scanner scanner = new Scanner(System.in); ChatMessage systemMessage = new ChatMessage(ChatMessageRole.SYSTEM.value(), instructionMessage); MessageTruncator messageTruncator = new MessageTruncator(chatModel.getMaxInputTokens(), systemMessage, Encodings.newDefaultEncodingRegistry().getEncodingForModel(chatModel.getEncodingModel())); messages.addAll(backend.getChatMessages(context, 30).stream().map(AnnotatedChatMessage::getMessage).collect( Collectors.toUnmodifiableList())); System.out.print("First Query: "); ChatMessage firstMsg = new ChatMessage(ChatMessageRole.USER.value(), scanner.nextLine()); messages.add(firstMsg); backend.saveChatMessage(firstMsg, context); while (true) { ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest .builder() .model(chatModel.getOpenAIModel()) .messages(messageTruncator.truncateMessages(messages, backend.getChatFunctions())) .functions(backend.getChatFunctions()) .functionCall(ChatCompletionRequest.ChatCompletionRequestFunctionCall.of("auto")) .n(1) .maxTokens(chatModel.getCompletionLength()) .logitBias(new HashMap<>()) .build(); Flowable<ChatCompletionChunk> flowable = service.streamChatCompletion(chatCompletionRequest); AtomicBoolean isFirst = new AtomicBoolean(true); ChatMessage chatMessage = service.mapStreamToAccumulator(flowable) .doOnNext(accumulator -> { if (accumulator.isFunctionCall()) { if (isFirst.getAndSet(false)) { System.out.println("Executing function " + accumulator.getAccumulatedChatFunctionCall().getName() + "..."); } } else { if (isFirst.getAndSet(false)) { System.out.print("Response: "); } if (accumulator.getMessageChunk().getContent() != null) { System.out.print(accumulator.getMessageChunk().getContent()); } } }) .doOnComplete(System.out::println) .lastElement() .blockingGet() .getAccumulatedMessage(); messages.add(chatMessage); // don't forget to update the conversation with the latest response backend.saveChatMessage(chatMessage, context); if (chatMessage.getFunctionCall() != null) { ChatFunctionCall fctCall = chatMessage.getFunctionCall(); //System.out.println("Trying to execute " + fctCall.getName() + " with arguments " + fctCall.getArguments().toPrettyString()); ChatMessage functionResponse = backend.executeAndConvertToMessageHandlingExceptions(fctCall, context); //System.out.println("Executed " + fctCall.getName() + "."); messages.add(functionResponse); backend.saveChatMessage(functionResponse, context); continue; } System.out.print("Next Query: "); String nextLine = scanner.nextLine(); if (nextLine.equalsIgnoreCase("exit")) { System.exit(0); } ChatMessage nextMsg = new ChatMessage(ChatMessageRole.USER.value(), nextLine); messages.add(nextMsg); backend.saveChatMessage(nextMsg, context); } } public static final String DEFAULT_GRAPHQL_ENDPOINT = "http://localhost:8888/graphql"; public static void main(String... args) throws Exception { if (args==null || args.length==0) throw new IllegalArgumentException("Please provide the name of the example you want to run. One of: " + Arrays.toString(Examples.values())); Examples example = Examples.valueOf(args[0].trim().toUpperCase()); String openAIToken = System.getenv("OPENAI_TOKEN"); String graphQLEndpoint = DEFAULT_GRAPHQL_ENDPOINT; if (args.length>1) graphQLEndpoint = args[1]; Map<String,Object> context = Map.of(); if (example.hasUserId()) { Scanner scanner = new Scanner(System.in); System.out.print("Enter the User ID: "); String userid = scanner.nextLine(); context = example.getContext(userid); } GraphQLExecutor apiExecutor = new GraphQLExecutor(graphQLEndpoint); APIChatBackend backend = APIChatBackend.of(Path.of(example.configFile), apiExecutor); CmdLineChatBot chatBot = new CmdLineChatBot(openAIToken, backend); chatBot.start(example.systemPrompt, context); } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel" ]
[((2681, 2711), 'com.theokanning.openai.completion.chat.ChatMessageRole.SYSTEM.value'), ((2849, 2937), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel'), ((3180, 3208), 'com.theokanning.openai.completion.chat.ChatMessageRole.USER.value'), ((3633, 3699), 'com.theokanning.openai.completion.chat.ChatCompletionRequest.ChatCompletionRequestFunctionCall.of'), ((5705, 5733), 'com.theokanning.openai.completion.chat.ChatMessageRole.USER.value')]
package io.github.cupybara.javalangchains.usecases; import static org.junit.jupiter.api.Assertions.assertFalse; import static org.junit.jupiter.api.Assertions.assertNotNull; import java.io.File; import java.io.IOException; import java.net.URISyntaxException; import java.nio.file.Files; import java.nio.file.Path; import java.nio.file.Paths; import java.util.Comparator; import org.apache.logging.log4j.LogManager; import org.apache.lucene.store.Directory; import org.junit.jupiter.api.AfterAll; import org.junit.jupiter.api.BeforeAll; import org.junit.jupiter.api.Test; import com.knuddels.jtokkit.Encodings; import com.knuddels.jtokkit.api.EncodingType; import io.github.cupybara.javalangchains.chains.Chain; import io.github.cupybara.javalangchains.chains.base.ApplyToStreamInputChain; import io.github.cupybara.javalangchains.chains.base.logging.LoggingChain; import io.github.cupybara.javalangchains.chains.data.reader.ReadDocumentsFromPdfChain; import io.github.cupybara.javalangchains.chains.data.retrieval.LuceneRetrievalChain; import io.github.cupybara.javalangchains.chains.data.writer.WriteDocumentsToLuceneDirectoryChain; import io.github.cupybara.javalangchains.chains.llm.openai.chat.OpenAiChatCompletionsChain; import io.github.cupybara.javalangchains.chains.llm.openai.chat.OpenAiChatCompletionsParameters; import io.github.cupybara.javalangchains.chains.qa.AnswerWithSources; import io.github.cupybara.javalangchains.chains.qa.CombineDocumentsChain; import io.github.cupybara.javalangchains.chains.qa.MapAnswerWithSourcesChain; import io.github.cupybara.javalangchains.chains.qa.ModifyDocumentsContentChain; import io.github.cupybara.javalangchains.chains.qa.split.JtokkitTextSplitter; import io.github.cupybara.javalangchains.chains.qa.split.SplitDocumentsChain; import io.github.cupybara.javalangchains.util.PromptTemplates; /** * tests for a complete qa {@link Chain} * * we'll read documents from our demo john doe pdfs at src/test/resources/pdf * and then ask questions about the protagonist. */ class RetrievalQaTest { private static Path tempIndexPath; private static Directory directory; @BeforeAll static void beforeAll() throws IOException, URISyntaxException { tempIndexPath = Files.createTempDirectory("lucene"); /* * We are also using a chain to create the lucene index directory */ final Chain<Path, Directory> createLuceneIndexChain = new ReadDocumentsFromPdfChain() // Optional Chain: split pdfs based on a max token count of 1000 .chain(new SplitDocumentsChain(new JtokkitTextSplitter( Encodings.newDefaultEncodingRegistry().getEncoding(EncodingType.CL100K_BASE), 1000))) // Mandatory Chain: write split pdf documents to a lucene directory .chain(new WriteDocumentsToLuceneDirectoryChain(tempIndexPath)); final Path pdfDirectoryPath = Paths.get(RetrievalQaTest.class.getResource("/pdf/qa").toURI()); directory = createLuceneIndexChain.run(pdfDirectoryPath); } @AfterAll static void afterAll() throws IOException { directory.close(); Files.walk(tempIndexPath).sorted(Comparator.reverseOrder()).map(Path::toFile).forEach(File::delete); } @Test void testQa() throws IOException { final OpenAiChatCompletionsParameters openAiChatParameters = new OpenAiChatCompletionsParameters() .temperature(0D).model("gpt-3.5-turbo"); /* * Chain 1: The retrievalChain is used to retrieve relevant documents from an * index by using bm25 similarity */ try (final LuceneRetrievalChain retrievalChain = new LuceneRetrievalChain(directory, 2)) { /* * Chain 2: The summarizeDocumentsChain is used to summarize documents to only * contain the most relevant information. This is achieved using an OpenAI LLM * (gpt-3.5-turbo in this case) */ final ModifyDocumentsContentChain summarizeDocumentsChain = new ModifyDocumentsContentChain( new OpenAiChatCompletionsChain(PromptTemplates.QA_SUMMARIZE, openAiChatParameters, System.getenv("OPENAI_API_KEY"))); /* * Chain 3: The combineDocumentsChain is used to combine the retrieved documents * in a single prompt */ final CombineDocumentsChain combineDocumentsChain = new CombineDocumentsChain(); /* * Chain 4: The openAiChatChain is used to process the combined prompt using an * OpenAI LLM (gpt-3.5-turbo in this case) */ final OpenAiChatCompletionsChain openAiChatChain = new OpenAiChatCompletionsChain( PromptTemplates.QA_COMBINE, openAiChatParameters, System.getenv("OPENAI_API_KEY")); /* * Chain 5: The mapAnswerWithSourcesChain is used to map the llm string output * to a complex object using a regular expression which splits the sources and * the answer. */ final MapAnswerWithSourcesChain mapAnswerWithSourcesChain = new MapAnswerWithSourcesChain(); // @formatter:off // we combine all chain links into a self contained QA chain final Chain<String, AnswerWithSources> qaChain = retrievalChain .chain(summarizeDocumentsChain) .chain(new ApplyToStreamInputChain<>(new LoggingChain<>(LoggingChain.defaultLogPrefix("SUMMARIZED_DOCUMENT")))) .chain(combineDocumentsChain) .chain(new LoggingChain<>(LoggingChain.defaultLogPrefix("COMBINED_DOCUMENT"))) .chain(openAiChatChain) .chain(new LoggingChain<>(LoggingChain.defaultLogPrefix("LLM_RESULT"))) .chain(mapAnswerWithSourcesChain); // @formatter:on // the QA chain can now be called with a question and delivers an answer final AnswerWithSources answerToValidQuestion = qaChain.run("who is john doe?"); assertNotNull(answerToValidQuestion, "no answer provided"); assertFalse(answerToValidQuestion.getSources().isEmpty(), "no sources"); LogManager.getLogger().info("answer to valid question: {}", answerToValidQuestion); } } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding" ]
[((2565, 2641), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncoding'), ((3034, 3133), 'java.nio.file.Files.walk(tempIndexPath).sorted(Comparator.reverseOrder()).map(Path::toFile).forEach'), ((3034, 3111), 'java.nio.file.Files.walk(tempIndexPath).sorted(Comparator.reverseOrder()).map'), ((3034, 3093), 'java.nio.file.Files.walk(tempIndexPath).sorted'), ((5703, 5785), 'org.apache.logging.log4j.LogManager.getLogger().info')]
package com.datasqrl.ai.spring; import com.datasqrl.ai.Examples; import com.datasqrl.ai.api.GraphQLExecutor; import com.datasqrl.ai.backend.APIChatBackend; import com.datasqrl.ai.backend.AnnotatedChatMessage; import com.datasqrl.ai.backend.MessageTruncator; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import com.knuddels.jtokkit.Encodings; import com.theokanning.openai.completion.chat.ChatCompletionRequest; import com.theokanning.openai.completion.chat.ChatCompletionRequest.ChatCompletionRequestFunctionCall; import com.theokanning.openai.completion.chat.ChatFunctionCall; import com.theokanning.openai.completion.chat.ChatMessage; import com.theokanning.openai.completion.chat.ChatMessageRole; import com.theokanning.openai.service.OpenAiService; import java.io.IOException; import java.net.URL; import java.nio.file.Path; import java.time.Duration; import java.util.ArrayList; import java.util.HashMap; import java.util.Map; import java.util.stream.Collectors; import org.springframework.beans.factory.annotation.Value; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.web.bind.annotation.*; import java.util.Arrays; import java.util.List; @SpringBootApplication public class SimpleServer { public static final String DEFAULT_GRAPHQL_ENDPOINT = "http://localhost:8888/graphql"; public static void main(String[] args) { SpringApplication.run(SimpleServer.class, args); } @CrossOrigin(origins = "*") @RestController public static class MessageController { private final Examples example; OpenAiService service; GraphQLExecutor apiExecutor; APIChatBackend backend; ChatMessage systemMessage; MessageTruncator messageTruncator; List functions; String chartFunctionName=""; public MessageController(@Value("${example:nutshop}") String exampleName) throws IOException { this.example = Examples.valueOf(exampleName.trim().toUpperCase()); String openAIToken = System.getenv("OPENAI_TOKEN"); this.service = new OpenAiService(openAIToken, Duration.ofSeconds(60)); String graphQLEndpoint = DEFAULT_GRAPHQL_ENDPOINT; this.apiExecutor = new GraphQLExecutor(graphQLEndpoint); this.backend = APIChatBackend.of(Path.of(example.getConfigFile()), apiExecutor); this.systemMessage = new ChatMessage(ChatMessageRole.SYSTEM.value(), example.getSystemPrompt()); this.messageTruncator = new MessageTruncator(example.getModel().getMaxInputTokens(), systemMessage, Encodings.newDefaultEncodingRegistry().getEncodingForModel(example.getModel().getEncodingModel())); this.functions = new ArrayList<>(); this.functions.addAll(backend.getChatFunctions()); if (example.isSupportCharts()) { ObjectMapper objectMapper = new ObjectMapper(); URL url = SimpleServer.class.getClassLoader().getResource("plotfunction.json"); if (url != null) { try { JsonNode functionJson = objectMapper.readTree(url); this.chartFunctionName = functionJson.get("name").textValue(); this.functions.add(functionJson); } catch (IOException e) { e.printStackTrace(); } } } } private Map<String,Object> getContext(String userId) { return Map.of(example.getUserIdFieldName(), example.getPrepareUserIdFct().apply( userId)); } @GetMapping("/messages") public List<ResponseMessage> getMessages(@RequestParam String userId) { Map<String,Object> context = getContext(userId); List<AnnotatedChatMessage> messages = backend.getChatMessages(context, 50); return messages.stream().filter(msg -> { ChatMessage m = msg.getMessage(); ChatMessageRole role = ChatMessageRole.valueOf(m.getRole().toUpperCase()); switch (role) { case USER: case ASSISTANT: return true; } return false; }).map(ResponseMessage::of).collect(Collectors.toUnmodifiableList()); } @PostMapping("/messages") public ResponseMessage postMessage(@RequestBody InputMessage message) { Map<String,Object> context = getContext(message.getUserId()); List<ChatMessage> messages = new ArrayList<>(30); backend.getChatMessages(context, 20).stream().map(AnnotatedChatMessage::getMessage) .forEach(messages::add); System.out.printf("Retrieved %d messages\n", messages.size()); ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), message.getContent()); messages.add(chatMessage); backend.saveChatMessage(chatMessage, context); while (true) { System.out.println("Calling OpenAI"); ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest .builder() .model(example.getModel().getOpenAIModel()) .messages(messageTruncator.truncateMessages(messages, backend.getChatFunctions())) .functions(functions) .functionCall(ChatCompletionRequestFunctionCall.of("auto")) .n(1) .maxTokens(example.getModel().getCompletionLength()) .logitBias(new HashMap<>()) .build(); ChatMessage responseMessage = service.createChatCompletion(chatCompletionRequest).getChoices().get(0).getMessage(); messages.add(responseMessage); // don't forget to update the conversation with the latest response backend.saveChatMessage(responseMessage, context); ChatFunctionCall functionCall = responseMessage.getFunctionCall(); if (functionCall != null && !functionCall.getName().equalsIgnoreCase(chartFunctionName)) { System.out.println("Executing " + functionCall.getName() + " with arguments " + functionCall.getArguments().toPrettyString()); ChatMessage functionResponse = backend.executeAndConvertToMessageHandlingExceptions( functionCall, context); //System.out.println("Executed " + fctCall.getName() + "."); messages.add(functionResponse); backend.saveChatMessage(functionResponse, context); } else { //The text answer return ResponseMessage.of(responseMessage); } } } } }
[ "com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel" ]
[((2444, 2474), 'com.theokanning.openai.completion.chat.ChatMessageRole.SYSTEM.value'), ((2620, 2717), 'com.knuddels.jtokkit.Encodings.newDefaultEncodingRegistry().getEncodingForModel'), ((4611, 4639), 'com.theokanning.openai.completion.chat.ChatMessageRole.USER.value')]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
15