Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    RuntimeError
Message:      Dataset scripts are no longer supported, but found cdcp.py
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 989, in dataset_module_factory
                  raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}")
              RuntimeError: Dataset scripts are no longer supported, but found cdcp.py

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

PIE Dataset Card for "cdcp"

This is a PyTorch-IE wrapper for the CDCP Huggingface dataset loading script.

Usage

from pie_datasets import load_dataset
from pie_documents.documents import TextDocumentWithLabeledSpansAndBinaryRelations

# load English variant
dataset = load_dataset("pie/cdcp")

# if required, normalize the document type (see section Document Converters below)
dataset_converted = dataset.to_document_type(TextDocumentWithLabeledSpansAndBinaryRelations)
assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledSpansAndBinaryRelations)

# get first relation in the first document
doc = dataset_converted["train"][0]
print(doc.binary_relations[0])
# BinaryRelation(head=LabeledSpan(start=0, end=78, label='value', score=1.0), tail=LabeledSpan(start=79, end=242, label='value', score=1.0), label='reason', score=1.0)
print(doc.binary_relations[0].resolve())
# ('reason', (('value', 'State and local court rules sometimes make default judgments much more likely.'), ('value', 'For example, when a person who allegedly owes a debt is told to come to court on a work day, they may be forced to choose between a default judgment and their job.')))

Data Schema

The document type for this dataset is CDCPDocument which defines the following data fields:

  • text (str)
  • id (str, optional)
  • metadata (dictionary, optional)

and the following annotation layers:

  • propositions (annotation type: LabeledSpan, target: text)
  • relations (annotation type: BinaryRelation, target: propositions)
  • urls (annotation type: Attribute, target: propositions)

See here for the annotation type definitions.

Document Converters

The dataset provides document converters for the following target document types:

  • pie_documents.documents.TextDocumentWithLabeledSpansAndBinaryRelations
    • labeled_spans: LabeledSpan annotations, converted from CDCPDocument's propositions
      • labels: fact, policy, reference, testimony, value
      • if propositions contain whitespace at the beginning and/or the end, the whitespace are trimmed out.
    • binary_relations: BinaryRelation annotations, converted from CDCPDocument's relations
      • labels: reason, evidence

See here for the document type definitions.

Collected Statistics after Document Conversion

We use the script evaluate_documents.py from PyTorch-IE-Hydra-Template to generate these statistics. After checking out that code, the statistics and plots can be generated by the command:

python src/evaluate_documents.py dataset=cdcp_base metric=METRIC

where a METRIC is called according to the available metric configs in config/metric/METRIC (see metrics).

This also requires to have the following dataset config in configs/dataset/cdcp_base.yaml of this dataset within the repo directory:

_target_: src.utils.execute_pipeline
input:
  _target_: pie_datasets.DatasetDict.load_dataset
  path: pie/cdcp
  revision: 001722894bdca6df6a472d0d186a3af103e392c5

For token based metrics, this uses bert-base-uncased from transformer.AutoTokenizer (see AutoTokenizer, and bert-based-uncased to tokenize text in TextDocumentWithLabeledSpansAndBinaryRelations (see document type).

Relation argument (outer) token distance per label

The distance is measured from the first token of the first argumentative unit to the last token of the last unit, a.k.a. outer distance.

We collect the following statistics: number of documents in the split (no. doc), no. of relations (len), mean of token distance (mean), standard deviation of the distance (std), minimum outer distance (min), and maximum outer distance (max). We also present histograms in the collapsible, showing the distribution of these relation distances (x-axis; and unit-counts in y-axis), accordingly.

Command
python src/evaluate_documents.py dataset=cdcp_base metric=relation_argument_token_distances
train (580 documents)
len max mean min std
ALL 2204 240 48.839 8 31.462
evidence 94 196 66.723 14 42.444
reason 2110 240 48.043 8 30.64
Histogram (split: train, 580 documents)

rtd-label_cdcp_train.png

test (150 documents)
len max mean min std
ALL 648 212 51.299 8 31.159
evidence 52 170 73.923 20 39.855
reason 596 212 49.326 8 29.47
Histogram (split: test, 150 documents)

rtd-label_cdcp_test.png

Span lengths (tokens)

The span length is measured from the first token of the first argumentative unit to the last token of the particular unit.

We collect the following statistics: number of documents in the split (no. doc), no. of spans (len), mean of number of tokens in a span (mean), standard deviation of the number of tokens (std), minimum tokens in a span (min), and maximum tokens in a span (max). We also present histograms in the collapsible, showing the distribution of these token-numbers (x-axis; and unit-counts in y-axis), accordingly.

Command
python src/evaluate_documents.py dataset=cdcp_base metric=span_lengths_tokens
statistics train test
no. doc 580 150
len 3901 1026
mean 19.441 18.758
std 11.71 10.388
min 2 3
max 142 83
Histogram (split: train, 580 documents)

slt_cdcp_train.png

Histogram (split: test, 150 documents)

slt_cdcp_test.png

Token length (tokens)

The token length is measured from the first token of the document to the last one.

We collect the following statistics: number of documents in the split (no. doc), mean of document token-length (mean), standard deviation of the length (std), minimum number of tokens in a document (min), and maximum number of tokens in a document (max). We also present histograms in the collapsible, showing the distribution of these token lengths (x-axis; and unit-counts in y-axis), accordingly.

Command
python src/evaluate_documents.py dataset=cdcp_base metric=count_text_tokens
statistics train test
no. doc 580 150
mean 130.781 128.673
std 101.121 98.708
min 13 15
max 562 571
Histogram (split: train, 580 documents)

tl_cdcp_train.png

Histogram (split: test, 150 documents)

tl_cdcp_test.png

Downloads last month
300