YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

👟 Sneakers_Classification Модель для классификации кроссовок с использованием сверточной нейронной сети на основе предобученного ResNet50. Проект реализован на PyTorch и обучается на кастомном датасете изображений различных моделей кроссовок.

📂 Описание проекта Цель — определить тип/модель кроссовок на изображении. Модель использует предобученную архитектуру ResNet50, дообученную на вашем собственном датасете, содержащем изображения кроссовок, отсортированные по папкам (одна папка = один класс).

🧠 Используемые технологии Python

PyTorch

torchvision

scikit-learn

PIL

matplotlib / seaborn

🗂️ Структура данных Путь к данным: /kaggle/input/sneakers-classification/sneakers-dataset/sneakers-dataset/

python-repl Copy Edit sneakers-dataset/ ├── Adidas/ │ ├── img1.jpg │ ├── img2.jpg │ └── ... ├── Nike/ │ ├── img1.jpg │ ├── img2.jpg │ └── ... ├── Puma/ │ └── ... ... ⚙️ Запуск обучения 📌 Подготовка bash Copy Edit pip install torch torchvision scikit-learn matplotlib seaborn 🚀 Запуск скрипта python Copy Edit python sneakers_train.py В скрипте используется автоматическое определение устройства (GPU, если доступен) и происходит обучение в течение 50 эпох с использованием Adam и CrossEntropyLoss.

🏗️ Архитектура модели В качестве основы используется ResNet50, где последний fully connected слой заменяется на:

python Copy Edit model.fc = nn.Linear(model.fc.in_features, NUM_CLASSES) Модель сохраняется в файл best_model.pth после каждой эпохи с улучшением метрики точности на валидации.

📊 Оценка модели Во время обучения выводятся:

Loss (потери)

Accuracy (точность)

Также вы можете дополнительно использовать confusion_matrix и classification_report из sklearn на тестовой выборке после обучения.

💾 Файлы sneakers_train.py — основной скрипт обучения

best_model.pth — веса лучшей модели после обучения

📈 Результаты Использовано классов: NUM_CLASSES

Лучшая точность валидации: X.XXX (выводится в конце обучения)

📬 Обратная связь Если у вас есть предложения или улучшения, открывайте Issue или Pull Request!

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support