BanglaBERT Sentiment Classifier
This is a fineโtuned BanglaBERT model trained on the BANEmo Dataset (https://ieeexplore.ieee.org/document/11171926) for Bangla sentiment analysis.
It classifies Bangla comments into two categories:
- 0 โ Sadness ๐ข
- 1 โ Happiness ๐
๐ Model Details
- Base model:
sagorsharma/banglabert - Task: Sequence Classification (Sentiment Analysis)
- Labels: 2 (Sadness, Happiness)
- Dataset: BANEmo (https://ieeexplore.ieee.org/document/11171926)
- Evaluation Metrics: Accuracy, F1 Score
- Validation Accuracy: ~84%
๐ ๏ธ Training Setup
- Framework: Hugging Face Transformers
- Optimizer: AdamW
- Learning Rate: 5eโ5
- Epochs: 3
- Batch Size: 8
- Loss Function: CrossEntropyLoss
๐ Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained("sakhawat-hossen/bangla-sentiment-banglabert")
tokenizer = AutoTokenizer.from_pretrained("sakhawat-hossen/bangla-sentiment-banglabert")
# Example prediction
text = "เฆเฆ เฆเฆฎเฆฟ เฆเงเฆฌ เฆเงเฆถเฆฟเฅค"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
prediction = torch.argmax(outputs.logits, dim=-1).item()
print("Prediction:", "Happiness ๐" if prediction == 1 else "Sadness ๐ข")
- Downloads last month
- 43
Model tree for sakhawat-hossen/bangla-sentiment-banglabert
Base model
sagorsarker/bangla-bert-base