CNNED_Protein
CNN-based embedding model for protein/bio sequences (triplet/contrastive training ready).
Model Summary
- Input: one-hot encoded sequence of shape
(B, A, L) - Encoder: 1D CNN + AvgPooling stacks
- Output: L2-normalized embedding
(B, D)via projection head - Training: Designed for triplet/contrastive loss (anchor, positive, negative)
Config
alphabet_size: 27target_size: 128channel: 256depth: 3kernel_size: 7l2norm: True
Usage
import json, torch
from safetensors.torch import load_file
# Load config
cfg = json.load(open("config.json","r"))
from model import CNNED_Protein
model = CNNED_Protein(**cfg).eval()
# Load weights
try:
sd = load_file("model.safetensors")
except Exception:
sd = torch.load("model.pt", map_location="cpu")
model.load_state_dict(sd, strict=True)
model.eval()
# Dummy inference
# x: (B, A, L) one-hot tensor
x = torch.randn(2, cfg['alphabet_size'], 512)
y, z = model.encode(x)
print(y.shape) # (2, target_size)
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support