Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| from sklearn.ensemble import HistGradientBoostingRegressor | |
| from sklearn.datasets import load_diabetes | |
| from sklearn.multioutput import MultiOutputRegressor | |
| # Assume y is now a DataFrame with multiple columns | |
| X, y = load_diabetes(return_X_y=True, as_frame=True) | |
| y = pd.DataFrame([y, y]).T | |
| # Make the estimator multi-output capable | |
| est = MultiOutputRegressor(HistGradientBoostingRegressor()).fit(X, y) | |
| def predict(input_df): | |
| prediction = est.predict(input_df) | |
| # Assume y has columns named "target1", "target2", etc. | |
| return pd.DataFrame(prediction, columns=y.columns) | |
| iface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Dataframe( | |
| value=X.head(1), | |
| headers=list(X.columns), | |
| col_count=(X.shape[1], "fixed"), | |
| row_count=(1, "dynamic"), | |
| datatype=X.dtypes.apply(str).replace("float64", "number").values.tolist(), | |
| ), | |
| outputs=gr.Dataframe( | |
| value=y.head(1), | |
| headers=list(y.columns), | |
| col_count=(y.shape[1], "fixed"), | |
| datatype=y.dtypes.apply(str).replace("float64", "number").values.tolist(), | |
| ), | |
| ) | |
| iface.launch() | |