CE - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on CE Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4-gram)
- Markov chains (context of 1, 2, 3 and 4)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions
- Language Vocabulary
- Language Statistics

Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 2.743x | 2.70 | 1.0676% | 595,703 |
| 16k | 3.096x | 3.04 | 1.2050% | 527,806 |
| 32k | 3.417x | 3.36 | 1.3298% | 478,250 |
| 64k | 3.716x π | 3.65 | 1.4461% | 439,790 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: `ΠΠ°Π³ΣΠΉΡΡΠ΄ () β ΠΠ·Π΅ΡΠ±Π°ΠΉΠ΄ΠΆΠ°Π½Π°Π½ Π₯ΠΎΠ΄ΠΆΠ°Π»ΠΈΠ½ ΠΊΣΠΎΡΡΠ°ΡΠ° ΡΠ²Π»Π°.
ΠΠ°Ρ Π°ΡΡ ΠΎΠΉ
ΠΠΈΠ»Π³Π°Π»Π΄Π°Ρ Π°ΡΡ ...`
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ΄Π° Π³Σ ΠΉ ΡΡ Π΄ β() ββ βΠ°Π·Π΅ΡΠ±Π°ΠΉΠ΄ΠΆΠ°Π½Π°Π½ βΡ
ΠΎΠ΄ ... (+17 more) |
27 |
| 16k | βΠ΄Π°Π³Σ ΠΉΡΡ Π΄ β() ββ βΠ°Π·Π΅ΡΠ±Π°ΠΉΠ΄ΠΆΠ°Π½Π°Π½ βΡ
ΠΎΠ΄ ΠΆ Π°Π»ΠΈΠ½ βΠΊΣΠΎΡΡΠ°ΡΠ° ... (+13 more) |
23 |
| 32k | βΠ΄Π°Π³Σ ΠΉΡΡ Π΄ β() ββ βΠ°Π·Π΅ΡΠ±Π°ΠΉΠ΄ΠΆΠ°Π½Π°Π½ βΡ
ΠΎΠ΄ΠΆΠ°Π»ΠΈΠ½ βΠΊΣΠΎΡΡΠ°ΡΠ° βΡΠ²Π»Π° . ... (+9 more) |
19 |
| 64k | βΠ΄Π°Π³Σ ΠΉΡΡ Π΄ β() ββ βΠ°Π·Π΅ΡΠ±Π°ΠΉΠ΄ΠΆΠ°Π½Π°Π½ βΡ
ΠΎΠ΄ΠΆΠ°Π»ΠΈΠ½ βΠΊΣΠΎΡΡΠ°ΡΠ° βΡΠ²Π»Π° . ... (+9 more) |
19 |
Sample 2: ΠΠ΅ΡΡΠ΅Π»Π» (ΠΠΈΡΡΡΡΠΈ) ΠΠ΅ΡΡΠ΅Π»Π» (ΠΠΊΠ»Π°Ρ
ΠΎΠΌΠ°)
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠΏΠ΅Ρ ΡΠ΅Π» Π» β( ΠΌΠΈΡΡΡΡΠΈ ) βΠΏΠ΅Ρ ΡΠ΅Π» Π» β( ... (+2 more) |
12 |
| 16k | βΠΏΠ΅Ρ ΡΠ΅Π» Π» β( ΠΌΠΈΡΡΡΡΠΈ ) βΠΏΠ΅Ρ ΡΠ΅Π» Π» β( ... (+2 more) |
12 |
| 32k | βΠΏΠ΅Ρ ΡΠ΅Π» Π» β( ΠΌΠΈΡΡΡΡΠΈ ) βΠΏΠ΅Ρ ΡΠ΅Π» Π» β( ... (+2 more) |
12 |
| 64k | βΠΏΠ΅Ρ ΡΠ΅Π»Π» β( ΠΌΠΈΡΡΡΡΠΈ ) βΠΏΠ΅Ρ ΡΠ΅Π»Π» β( ΠΎΠΊΠ»Π°Ρ
ΠΎΠΌΠ° ) |
10 |
Sample 3: ΠΠ»Ρ ΠΠ°ΡΠΎ (ΠΠΎΡΠΈΡΠ»Π°Π½) ΠΠ»Ρ ΠΠ°ΡΠΎ (Π‘Π°Π½ ΠΠΈΠ³Π΅Π» Π’ΠΎΡΠΎΠ»Π°ΠΏΠ°Π½) ΠΠ»Ρ ΠΠ°ΡΠΎ (Π₯Π΅Π½Π΅ΡΠ°Π» ΠΠ»ΠΈΠΎΠ΄ΠΎΡΠΎ ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΡΠ»Ρ βΠ±Π°ΡΠΎ β( ΠΌ ΠΎΡ ΠΈΡ Π»Π°Π½ ) βΡΠ»Ρ βΠ±Π°ΡΠΎ ... (+21 more) |
31 |
| 16k | βΡΠ»Ρ βΠ±Π°ΡΠΎ β( ΠΌ ΠΎΡ ΠΈΡΠ»Π°Π½ ) βΡΠ»Ρ βΠ±Π°ΡΠΎ β( ... (+18 more) |
28 |
| 32k | βΡΠ»Ρ βΠ±Π°ΡΠΎ β( ΠΌ ΠΎΡ ΠΈΡΠ»Π°Π½ ) βΡΠ»Ρ βΠ±Π°ΡΠΎ β( ... (+11 more) |
21 |
| 64k | βΡΠ»Ρ βΠ±Π°ΡΠΎ β( ΠΌΠΎΡ ΠΈΡΠ»Π°Π½ ) βΡΠ»Ρ βΠ±Π°ΡΠΎ β( ΡΠ°Π½ ... (+10 more) |
20 |
Key Findings
- Best Compression: 64k achieves 3.716x compression
- Lowest UNK Rate: 8k with 1.0676% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|
| 2-gram | 3,434 π | 11.75 | 180,710 | 25.5% | 63.0% |
| 2-gram | 484 π | 8.92 | 7,755 | 52.4% | 97.1% |
| 3-gram | 5,932 | 12.53 | 322,719 | 16.0% | 53.7% |
| 3-gram | 2,779 | 11.44 | 72,318 | 22.8% | 66.2% |
| 4-gram | 7,779 | 12.93 | 709,202 | 12.7% | 49.4% |
| 4-gram | 7,269 | 12.83 | 422,662 | 15.4% | 47.3% |
Top 5 N-grams by Size
2-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | . β |
1,635,703 |
| 2 | ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : |
1,346,163 |
| 3 | Π½Π°Ρ
Π±Π΅Ρ
Π° |
1,039,301 |
| 4 | Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ |
953,016 |
| 5 | ΠΌ . |
797,532 |
3-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π½Π°Ρ
Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ |
952,979 |
| 2 | ( ) β |
477,700 |
| 3 | ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : |
455,946 |
| 4 | Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ |
448,323 |
| 5 | . Π° . |
416,844 |
4-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : |
448,323 |
| 2 | Π½Π°Ρ
Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ |
448,323 |
| 3 | . β ΠΌ . |
345,745 |
| 4 | β ΠΌ . : |
345,423 |
| 5 | ΠΊΣΠΎΡΡΠ°Π½ Π½Π°Ρ
Π±Π΅Ρ
Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ |
256,924 |
Key Findings
- Best Perplexity: 2-gram with 484
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~47% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|
| 1 | 0.4898 | 1.404 | 3.61 | 596,401 | 51.0% |
| 1 | 1.0551 | 2.078 | 11.42 | 1,510 | 0.0% |
| 2 | 0.2471 | 1.187 | 1.75 | 2,141,469 | 75.3% |
| 2 | 1.0286 | 2.040 | 7.78 | 17,227 | 0.0% |
| 3 | 0.1096 | 1.079 | 1.30 | 3,726,034 | 89.0% |
| 3 | 0.8548 | 1.809 | 4.95 | 133,970 | 14.5% |
| 4 | 0.0635 π | 1.045 | 1.17 | 4,825,259 | 93.6% |
| 4 | 0.7262 π | 1.654 | 3.28 | 662,768 | 27.4% |
Generated Text Samples
Below are text samples generated from each Markov chain model:
Context Size 1:
. Π³Π΅ΠΎΠ³Ρ . β ΠΌ . Π° Π±Π΅ΡΡΠ°Π½Π°ΡΠΊΠ°Ρ Ρ , ΡΡΡΠ½Π°Π½ Π³ΡΡ Π±ΠΎΠ»Ρ ΡΠ΅Π΄ΠΈΠ½ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ° ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠ½Π° Π΄ΠΈΠΊΠΊΠ°, ΠΉΡΠΊΠΊΡΠ΅ΡΠ° Π±Π°ΡΠ°ΠΌ 2000 . ΠΈΠ·Π΄ . catherine b . surface properties of chicle extraction inβ ΠΈΡΠ»Ρ ( ΠΏΠΎ Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΡΠΌ ΡΡΡΠ°Π½Π°ΠΌ ) ΠΊΣΠ΅Π·Π·ΠΈΠ³ ΠΊΡΠΈΠ»Π±Π°ΡΠ΅Π΄Π΅Ρ ΡΠ° Ρ ΠΎΠΊΠ°Π½Π° ΠΌΠΎΡΡ Π±ΡΡΠΉΡΡΡ Π΄ΠΎΠ»Ρ ΣΠ°ΡΠ½ΡΠ°ΠΊΠ»ΠΈΠΌΠ°Ρ ΠΊΠ°Π»ΡΠΆΡΠΊ...
Context Size 2:
. β Π΅ΠΊΠ°ΡΠ΅ΡΠΈΠ½Π±ΡΡΠ³ : Ρ - ΡΠ°ΠΊΡΠΎΡΠΈΡ , 2006 . Π°Π»ΡΠΏΠ΅ΡΠΎΠ²ΠΈΡ ΠΌ . ΡΠΎΠ΄ΡΠΈΠ³Π΅ΡΠ° , ΠΌ .ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : ΡΠ΅ΡΠ±ΠΈΠ½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : ΠΌΠ΅ΠΊΡΠΈΠΊΠΈΠ½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : Π²ΠΈΡΠ΅Π±ΡΠΊΠ°Π½ ΠΎΠ±Π»Π°Ρ...Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : ΠΌΠ΅ΠΊΡΠΈΠΊΠΈΠ½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³ . Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈ . Π±Π°Ρ Π°ΡΡ ΠΎΠΉΠ½ Π΄ΡΠΊΡ Π°Π»Π»Π° Π±Π°Ρ Π°ΡΡ ΠΎΠΉΠ½ Π΄ΡΠΊΡ ...
Context Size 3:
( ) β ΡΠΎΡΡΠΈΠΉΠ½ ΡΠ΅Π΄Π΅ΡΠ°ΡΠΈΠ½ Π²ΠΎΠ»ΠΎΠ³Π΄ΠΈΠ½ ΠΎΠ±Π»Π°ΡΡΠ°Π½ ΠΌΠ΅ΠΆΠ΄ΡΡΠ΅ΡΠ΅Π½ΡΠΊΠ°Π½ ΠΊΣΠΎΡΡΠ°ΡΠ° Π΄ΣΠ°ΡΠ΅ΡΠ½Π° ΡΠ²Π»Π° . Π±Π°Ρ Π°ΡΡ ΠΎΠΉΠ½ Π΄ΡΠΊΡ Π°Π»Π»Π°...Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : ΠΌΠΎΠ»Π΄Π°Π²ΠΈΠ½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : Π°ΡΡ Π³ΡΠΎΠ½Π°Ρ ru : ΠΊΠ°Π»ΠΌΠ΅Π½ ( ΠΎΠΊΡΡΠ³ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : ΠΈΠ΄Π°Π»ΡΠ³ΠΎ ΡΡΠ°ΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : Π±Π΅Π»Ρ Π°Π½ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : Π½ΠΎΠ²ΠΎΡΠΈΠ±ΠΈΡ...
Context Size 4:
Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : ΠΏΠΎΠ΄Π»ΡΡΡΠ΅Π½ Π²ΠΎΠ΅Π²ΠΎΠ΄Π°Π»Π»ΠΈΠ½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : Π°Π±Π°ΡΡΠ° Π½ΠΈΡΠΉΠΈΠ½Π° Π½Π°Ρ Π±Π΅Ρ Π° ...Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : Π»Π°Ρ Π° ΠΊΠ°Π»ΠΈΡΠΎΡΠ½ΠΈ ΡΡΠ°ΡΠ°Π½ Π½Π°Ρ Π±Π΅Ρ Π° ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ : Π²ΠΈΠ»ΡΠ° ΠΆΡΠ΄Π΅ΡΠ°Π½ ΠΊΠΎΠΌΠΌΡΠ½.... β ΠΌ . : Π²ΡΡΡΠ°Ρ ΡΠΊΠΎΠ»Π° , 2005 . β 463 Ρ . β isbn 5060045196 . Π½ΠΎΠ²Π°Ρ
Key Findings
- Best Predictability: Context-4 with 93.6% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (662,768 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 267,119 |
| Total Tokens | 73,448,738 |
| Mean Frequency | 274.97 |
| Median Frequency | 3 |
| Frequency Std Dev | 8220.95 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | Π° | 1,816,439 |
| 2 | ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈ | 1,354,932 |
| 3 | Π½Π°Ρ | 1,049,211 |
| 4 | Π±Π΅Ρ Π° | 1,039,698 |
| 5 | ΠΌΠ΅ΡΡΠΈΠ³Π°Ρ | 968,759 |
| 6 | ΠΉΡ | 814,168 |
| 7 | ΠΌ | 798,682 |
| 8 | ΠΊΠ»ΠΈΠΌΠ°Ρ | 741,279 |
| 9 | Π² | 737,093 |
| 10 | Π±ΠΈΠ»Π³Π°Π»Π΄Π°Ρ Π°ΡΡ | 631,115 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΡΠΌΠΏΠ°ΡΠ°Π΄ΠΎ | 2 |
| 2 | ΡΠ½Π°Π½ΠΎ | 2 |
| 3 | ΡΡΠΊΠΎΠΏΠ΅ΡΠ°Π» | 2 |
| 4 | ΡΡΠΊΡΠΈΡΠΎΡΠΈΠΎ | 2 |
| 5 | ΠΌΠ°ΠΊΠ°ΡΠΈΠΎΡ | 2 |
| 6 | ΡΡΠΎΠΈΠΊΠ° | 2 |
| 7 | ΡΠΊΠΈΡΡΠΈΠ½Π³ | 2 |
| 8 | Π·ΠΈΠ³ΡΠΈΠ½ΡΠΎΡ | 2 |
| 9 | Π·ΠΈΠ³ΡΠΈΠ½ΡΠΎΡ | 2 |
| 10 | Π»ΡΠΊΡΠ΅ΠΌΠ±ΡΡΠ³Ρ ΠΎ | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.8071 |
| RΒ² (Goodness of Fit) | 0.946340 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 40.3% |
| Top 1,000 | 81.6% |
| Top 5,000 | 96.4% |
| Top 10,000 | 97.6% |
Key Findings
- Zipf Compliance: RΒ²=0.9463 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 40.3% of corpus
- Long Tail: 257,119 words needed for remaining 2.4% coverage
5. Word Embeddings Evaluation
Model Comparison
| Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
|---|---|---|---|---|---|
| mono_32d | 105,624 | 32 | 6.269 | 1.405 | 0.8750 π |
| mono_64d | 105,624 | 64 | 6.426 | 0.986 | 0.8540 |
| mono_128d | 105,624 | 128 | 6.612 | 0.771 | 0.7972 |
| embeddings_enhanced | 0 | 0 | 0.000 | 0.000 | 0.0000 |
Key Findings
- Best Isotropy: mono_32d with 0.8750 (more uniform distribution)
- Dimension Trade-off: Higher dimensions capture more semantics but reduce isotropy
- Vocabulary Coverage: All models cover 105,624 words
- Recommendation: 100d for balanced semantic capture and efficiency
6. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 32k BPE | Best compression (3.72x) with low UNK rate |
| N-gram | 5-gram | Lowest perplexity (484) |
| Markov | Context-4 | Highest predictability (93.6%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
Generated by Wikilangs Models Pipeline
Report Date: 2025-12-28 17:05:28











